The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Nitric oxide controls src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism.

c-Src kinase was activated when either murine NIH3T3 fibroblast cells or immunoprecipitated c-Src proteins were treated with nitric oxide generator, S-nitroso-N-acetyl penicillamine (SNAP) or sodium nitroprusside. Nitric oxide (NO) scavenger hemoglobin and N(2)O(3) scavenger homocysteine abolished the SNAP-mediated c-Src kinase activation. Phosphoamino acid analysis and peptide mapping of in vitro labeled phospho-c-Src proteins revealed that SNAP promoted the autophosphorylation at tyrosine, which preferentially took place at Tyr-416. Peptide mapping of in vivo labeled c-Src kinase excluded the involvement of phospho-Tyr-527 dephosphorylation in the SNAP-mediated activation mechanism. Correspondingly, protein-tyrosine phosphatase inhibitor Na(3)VO(4) did not abolish the SNAP-mediated activation of Src kinase, and the constitutively activated v-Src kinase was also further up-regulated in activity by SNAP. SNAP, however, failed to up-regulate the kinase activity of Phe-416 mutant v-Src. 2-Mercaptoethanol or dithiothreitol, which should disrupt N(2)O(3)-mediated S-nitrosylation and subsequent formation of the S-S bond, abolished the up-regulated catalytic activity, and the activity was regained after re-exposing the enzyme to SNAP. Exposure of Src kinase to SNAP promoted both autophosphorylation and S-S bond-mediated aggregation of the kinase molecules, demonstrating a linkage between the two events. These results suggest that the NO/N(2)O(3)-provoked S-nitrosylation/S-S bond formation destabilizes the Src structure for Tyr-416 autophosphorylation-associated activation bypassing the Tyr-527-linked regulation.[1]

References

  1. Nitric oxide controls src kinase activity through a sulfhydryl group modification-mediated Tyr-527-independent and Tyr-416-linked mechanism. Akhand, A.A., Pu, M., Senga, T., Kato, M., Suzuki, H., Miyata, T., Hamaguchi, M., Nakashima, I. J. Biol. Chem. (1999) [Pubmed]
 
WikiGenes - Universities