The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The yeast transcription factor Mac1 binds to DNA in a modular fashion.

Mac1 is a metalloregulatory protein that regulates expression of the high affinity copper transport system in the yeast Saccharomyces cerevisiae. Under conditions of high copper concentration, Mac1 represses transcription of genes coding for copper transport proteins. Mac1 binds to DNA sequences called copper response elements (CuREs), which have the consensus sequence 5'-TTTGC(T/G)C(A/G)-3'. Mac1 contains two zinc binding sites, a copper binding site, and the sequence motif RGRP, which has been found in other proteins to mediate binding to the minor groove of A/T-rich sequences in DNA. We have used hydroxyl radical footprinting, missing nucleoside, and methylation interference experiments to investigate the structure of the complex of the DNA binding domain of Mac1 (called here Mac1(t)) with the two CuRE sites found in the yeast CTR1 promoter. We conclude from these experiments that Mac1(t) binds in a modular fashion to DNA, with its RGRP AT-hook motif interacting with the TTT sequence at the 5' end of the CTR1 CuRE site, and with another DNA-binding module(s) binding in the adjacent major groove in the GCTCA sequence.[1]


  1. The yeast transcription factor Mac1 binds to DNA in a modular fashion. Jamison McDaniels, C.P., Jensen, L.T., Srinivasan, C., Winge, D.R., Tullius, T.D. J. Biol. Chem. (1999) [Pubmed]
WikiGenes - Universities