The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characteristics of L-carnitine transport in cultured human hepatoma HLF cells.

The recently cloned organic cation transporter, OCTN2, isolated as a homologue of OCTN1, has been shown to be of physiological importance in the renal tubular reabsorption of filtered L-carnitine as a high-affinity Na+ carnitine transporter in man. Although the mutation of the OCTN2 gene has been proved to be directly related to primary carnitine deficiency, there is little information about the L-carnitine transport system in the liver. In this study, the characteristics of L-carnitine transport into hepatocytes were studied by use of cultured human hepatoma HLF cells, which expressed OCTN2 mRNA to a greater extent than OCTN1 mRNA. The uptake of L-carnitine into HLF cells was saturable and the Eadie-Hofstee plot showed two distinct components. The apparent Michaelis constant and the maximum transport rate were 6.59+/-1.85 microM (mean+/-s.d.) and 78.5+/-21.4 pmol/5 min/10(6) cells, respectively, for high-affinity uptake, and 590+/-134 microM and 1507+/-142 pmol/5 min/10(6) cells, respectively, for low-affinity uptake. The high affinity L-carnitine transporter was significantly inhibited by metabolic inhibitors (sodium azide, dinitrophenol, iodoacetic acid) and at low temperature (4 degrees C). Uptake of [3H]L-carnitine also required the presence of Na+ ions in the external medium. The uptake activity was highest at pH 7.4, and was significantly lower at acidic or basic pH. L-Carnitine analogues (D-carnitine, L-acetylcarnitine and gamma-butyrobetaine) strongly inhibited uptake of [3H] L-carnitine, whereas beta-alanine, glycine, choline, acetylcholine and an organic anion and cation had little or no inhibitory effect. In conclusion, L-carnitine is absorbed by hepatocytes from man by an active carrier-mediated transport system which is Na+-, energy- and pH-dependent and has properties very similar to those of the carnitine transporter OCTN2.[1]

References

  1. Characteristics of L-carnitine transport in cultured human hepatoma HLF cells. Yokogawa, K., Miya, K., Tamai, I., Higashi, Y., Nomura, M., Miyamoto, K., Tsuji, A. J. Pharm. Pharmacol. (1999) [Pubmed]
 
WikiGenes - Universities