The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Signaling by glutamate dehydrogenase in response to pesticide treatment and nitrogen fertilization of peanut (Arachis hypogaea L.).

The responses of glutamate dehydrogenase ( GDH) to NH(4)(+) and herbicides offer a new approach for probing the effects of NH(4)(+)-pesticide interactions at the whole-plant level. Although pesticides and fertilizers have greatly enhanced food production, their combined biochemical effects are not known in detail. Peanut plants were treated with different rates of Basagran (3-(1-methylethyl)-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide), Bravo 720 (tetrachloroiso-phthalonitrile), and Sevin XLR Plus (1-naphthyl N-methylcarbamate), with and without 25 mM NH(4)Cl fertilization. Isoelectric focusing, followed by native 7.5% polyacrylamide gel electrophoresis (PAGE) fractionated the peanut seed GDH fully to its isoenzyme population patterns. The pesticide treatments induced positive skewing of the GDH isoenzymes, but NH(4)Cl-pesticide cotreatments induced a negatively skewed distribution. Basagran, Sevin, and Bravo increased the amination activities of GDH from 30.0 +/- 2.8 units in the control assay to 479.0 +/- 20.7, 63.0 +/- 5.8, and 35.2 +/- 2.2 units, respectively, therefore indicating a direct GDH-pesticide interaction. Neither the NH(4)(+) nor the pesticides increased the peanut seed protein yields above the threshold of 3.8 +/- 0.7 g per pot. But in the GDH combination of the signals from a pesticide and NH(4)(+), at least 70% of the pesticide signal was overridden by NH(4)(+) with concomitant increases in peanut seed protein yields to 7.0 +/- 1.8 g per pot. Basagran, Sevin, and Bravo possess different pesticidal properties, but their effects on GDH activity were related in the decreasing order of their nucleophilicity, viz. Basagran > Sevin > Bravo.[1]


WikiGenes - Universities