CpG methylation reduces genomic instability.
Hypomethylation of DNA in tumor cells is associated with genomic instability and has been suggested to be due to activation of mitotic recombination. We have studied the methylation patterns in two 650 kb double minute chromosomes present in two mouse tumor cell lines, resistant to methotrexate. Multiple copies of the double minute chromosomes amplifying the dihydrofolate reductase gene are present in both the cell lines. In one of the cell lines ( Mut F), two unmethylated CpG islands in the double minute chromosomes are readily cleaved by methylation-sensitive rare-cutting restriction endonucleases. In the other cell line ( Mut C), the cleavage sites in the double minute chromosomes are partially methylated and resistant to cleavage. The double minute chromosomes with the two unmethylated CpG islands undergo rapid dimerization, whereas the double minute chromosomes with the partially methylated CpG islands are unchanged in size for over a year in continuous culture. The partially methylated CpG islands can be demethylated by azacytidine treatment or naturally by extended time in culture, and become sensitive to cleavage with the rare-cutting restriction endonucleases. The Mut C double minute chromosomes, with the newly demethylated CpG islands, but not the double minute chromosomes with the partially methylated CpG islands, undergo deletions and dimerizations. These results suggest a role for CpG island methylation controlling mitotic recombination between and within large DNA molecules.[1]References
- CpG methylation reduces genomic instability. Rizwana, R., Hahn, P.J. J. Cell. Sci. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg