The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Beta-cell maturation leads to in vitro sensitivity to cytotoxins.

Pancreatic beta-cells are more sensitive to several toxins (e.g., streptozotocin, alloxan, cytokines) than the other three endocrine cell types in the islets of Langerhans. Cytokine-induced free radicals in beta-cells may be involved in beta-cell-specific destruction in type 1 diabetes. To investigate if this sensitivity represents an acquired trait during beta-cell maturation, we used two in vitro cultured cell systems: 1) a pluripotent glucagon-positive pre-beta-cell phenotype (NHI-glu) that, after in vivo passage, matures into an insulin-producing beta-cell phenotype (NHI-ins) and 2) a glucagonoma cell-type (AN-glu) that, after stable transfection with pancreatic duodenal homeobox factor-1 (PDX-1), acquires the ability to produce insulin (AN-ins). After exposure to interleukin (IL)-1beta, both of the insulin-producing phenotypes were significantly more susceptible to toxic effects than their glucagon-producing counterparts. Nitric oxide (NO) production was induced in both NHI phenotypes, and inhibition with 0.5 mmol/l N(G)-monomethyl-L-arginine (NMMA) fully protected the cells. In addition, maturation into the NHI-ins phenotype was associated with an acquired dose-dependent sensitivity to the toxic effect of streptozotocin. Our results support the hypothesis that the exquisite sensitivity of beta-cells to IL-1beta and streptozotocin is an acquired trait during beta-cell maturation. These two cell systems will be useful tools for identification of molecular mechanisms involved in beta-cell maturation and sensitivity to toxins in relation to type 1 diabetes.[1]


  1. Beta-cell maturation leads to in vitro sensitivity to cytotoxins. Nielsen, K., Karlsen, A.E., Deckert, M., Madsen, O.D., Serup, P., Mandrup-Poulsen, T., Nerup, J. Diabetes (1999) [Pubmed]
WikiGenes - Universities