The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Alloxan     1,3-diazinane-2,4,5,6-tetrone

Synonyms: ALLOXANE, Mesoxalylurea, mesoxalyl-Urea, Alloxan 7169, SureCN64547, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Alloxan

 

Psychiatry related information on Alloxan

 

High impact information on Alloxan

 

Chemical compound and disease context of Alloxan

 

Biological context of Alloxan

  • High affinity binding sites of islets from rats pretreated with alloxan decreased by about one half, whereas Kd was unaffected [19].
  • We therefore studied the effects of DIMIT (0.5 mg/kg per d, s.c.) administration to pregnant alloxan-diabetic rabbits on days 25 and 26 of gestation [20].
  • The involvement of tyrosine phosphorylation in insulin action led us to hypothesize that increased activity of protein tyrosine phosphatases (PTPases) might contribute to insulin resistance in alloxan diabetes in the rat [21].
  • This hydrolysis was inhibited by alloxan but unaffected by dextran of NaF [22].
  • Type I diabetes mellitus was induced in male rats by alloxan (140 mg/kg, i.p.). After 5 wk, the diabetic rat penis exhibited increased O-GlcNAc modification of eNOS and decreased eNOS phosphorylation at Ser-1177 at baseline compared with the control rat penis; eNOS phosphorylation at Thr-495, Ser-615, and Ser-633 was not affected [23].
 

Anatomical context of Alloxan

 

Associations of Alloxan with other chemical compounds

 

Gene context of Alloxan

 

Analytical, diagnostic and therapeutic context of Alloxan

  • Transplantation of grafts consisting of 3 x 10(5) beta cells (1,000 aggregated) under the kidney capsule of alloxan-diabetic nude mice corrected hyperglycemia in 75% (10/13) of the animals, whereas, 100% (20/20) of recipients implanted with 6 x 10(5) beta cells (2,000 aggregates) achieved euglycemia within 8 wk posttransplantation [37].
  • The pattern persists after bilateral transthoracic vagotomy and in animals rendered diabetic by alloxan [38].
  • The viability of human beta cells purified by flow cytometry was not affected by SZ or alloxan (5 mM), as judged 1 or 4 days after a 10-min exposure and subsequent culture; these conditions were cytotoxic for rat beta cells, with 65-95% (P < 0.01) dead beta cells after 4 days [28].
  • Activation of NFkappaB in pancreatic nuclear extracts was observed 30 min after alloxan injection, as assessed by an electrophoretic mobility shift assay [15].
  • Using EPR spin trapping techniques, we demonstrated that alloxan generated ROS in the pancreas 15 min after administration [15].

References

  1. Glucagon: role in the hyperglycemia of diabetes mellitus. Dobbs, R., Sakurai, H., Sasaki, H., Faloona, G., Valverde, I., Baetens, D., Orci, L., Unger, R. Science (1975) [Pubmed]
  2. Increased insulin binding by hepatic plasma membranes from diabetic rats: normalization by insulin therapy. Davidson, M.B., Kaplan, S.A. J. Clin. Invest. (1977) [Pubmed]
  3. Relationship of an abnormal plasma lipoprotein to protection from atherosclerosis in the cholesterol-fed diabetic rabbit. Brecher, P., Chobanian, A.V., Small, D.M., Van Sickle, W., Tercyak, A., Lazzari, A., Baler, J. J. Clin. Invest. (1983) [Pubmed]
  4. Arrhythmia susceptibility and myocardial composition in diabetes. Influence of physical conditioning. Bakth, S., Arena, J., Lee, W., Torres, R., Haider, B., Patel, B.C., Lyons, M.M., Regan, T.J. J. Clin. Invest. (1986) [Pubmed]
  5. Determinants of the selective toxicity of alloxan to the pancreatic B cell. Malaisse, W.J., Malaisse-Lagae, F., Sener, A., Pipeleers, D.G. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  6. Effect of hyperglycemia on pain threshold in alloxan-diabetic rats. Lee, J.H., Cox, D.J., Mook, D.G., McCarty, R.C. Pain (1990) [Pubmed]
  7. Effects of alloxan induced diabetes on the feeding patterns of rats. Thomas, D.W., Scharrer, E., Mayer, J. Physiol. Behav. (1976) [Pubmed]
  8. Further analysis of the resistance of the diabetic rat to d-amphetamine. Marshall, J.F. Pharmacol. Biochem. Behav. (1978) [Pubmed]
  9. Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Yamamoto, H., Uchigata, Y., Okamoto, H. Nature (1981) [Pubmed]
  10. Intraventricular alloxan eliminates feeding elicited by 2-deoxyglucose. Woods, S.C., McKay, L.D. Science (1978) [Pubmed]
  11. Artificial pancreas using living beta cells:. effects on glucose homeostasis in diabetic rats. Chick, W.L., Perna, J.J., Lauris, V., Low, D., Galletti, P.M., Panol, G., Whittemore, A.D., Like, A.A., Colton, C.K., Lysaght, M.J. Science (1977) [Pubmed]
  12. Anomeric specificty of 3-0-methyl-D-glycopyranose against alloxan diabetes. Rossini, A.A., Cahill, G.F., Jeanioz, D.A., Jeanioz, R.W. Science (1975) [Pubmed]
  13. Pancreatic islet beta cells drive T cell-immune responses in the nonobese diabetic mouse model. Larger, E., Bécourt, C., Bach, J.F., Boitard, C. J. Exp. Med. (1995) [Pubmed]
  14. Enzymatic reduction of alloxan by thioredoxin and NADPH-thioredoxin reductase. Holmgren, A., Lyckeborg, C. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  15. Supplementation of N-acetylcysteine inhibits NFkappaB activation and protects against alloxan-induced diabetes in CD-1 mice. Ho, E., Chen, G., Bray, T.M. FASEB J. (1999) [Pubmed]
  16. ALS/Lt: a new type 2 diabetes mouse model associated with low free radical scavenging potential. Mathews, C.E., Bagley, R., Leiter, E.H. Diabetes (2004) [Pubmed]
  17. Nicotinamide does not protect islet B-cell metabolism against alloxan toxicity. Sandler, S., Welsh, M., Andersson, A. Diabetes (1984) [Pubmed]
  18. Streptozocin- and alloxan-induced H2O2 generation and DNA fragmentation in pancreatic islets. H2O2 as mediator for DNA fragmentation. Takasu, N., Komiya, I., Asawa, T., Nagasawa, Y., Yamada, T. Diabetes (1991) [Pubmed]
  19. Evidence for presence of insulin receptors in rat islets of Langerhans. Verspohl, E.J., Ammon, H.P. J. Clin. Invest. (1980) [Pubmed]
  20. 3,5-Dimethyl-3'-isopropyl-l-thyronine therapy in diabetic pregnancy: stimulation of rabbit fetal lung phospholipids. Neufeld, N., Melmed, S. J. Clin. Invest. (1981) [Pubmed]
  21. Differential regulation of multiple hepatic protein tyrosine phosphatases in alloxan diabetic rats. Boylan, J.M., Brautigan, D.L., Madden, J., Raven, T., Ellis, L., Gruppuso, P.A. J. Clin. Invest. (1992) [Pubmed]
  22. Pitfalls in the use of lead nitrate for the histochemical demonstration of adenylate cyclase activity. Lemay, A., Jarett, L. J. Cell Biol. (1975) [Pubmed]
  23. Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Musicki, B., Kramer, M.F., Becker, R.E., Burnett, A.L. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  24. Insulin and glucose as modulators of the amino acid-induced glucagon release in the isolated pancreas of alloxan and streptozotocin diabetic rats. Pagliara, A.S., Stillings, S.N., Haymond, M.W., Hover, B.A., Matschinsky, F.M. J. Clin. Invest. (1975) [Pubmed]
  25. Hyperglycemia-induced B cell toxicity. The fate of pancreatic islets transplanted into diabetic mice is dependent on their genetic background. Korsgren, O., Jansson, L., Sandler, S., Andersson, A. J. Clin. Invest. (1990) [Pubmed]
  26. Endothelium-dependent inhibition of Na(+)-K+ ATPase activity in rabbit aorta by hyperglycemia. Possible role of endothelium-derived nitric oxide. Gupta, S., Sussman, I., McArthur, C.S., Tornheim, K., Cohen, R.A., Ruderman, N.B. J. Clin. Invest. (1992) [Pubmed]
  27. Hepatic protein phosphotyrosine phosphatase. Dephosphorylation of insulin and epidermal growth factor receptors in normal and alloxan diabetic rats. Gruppuso, P.A., Boylan, J.M., Posner, B.I., Faure, R., Brautigan, D.L. J. Clin. Invest. (1990) [Pubmed]
  28. Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury. Eizirik, D.L., Pipeleers, D.G., Ling, Z., Welsh, N., Hellerström, C., Andersson, A. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  29. Adaptive regulation of hepatic bile salt transport: effects of alloxan diabetes in the rat. Icarte, M.A., Pizarro, M., Accatino, L. Hepatology (1991) [Pubmed]
  30. Induction of rat pancreatic B-cell tumors by the combined administration of streptozotocin or alloxan and poly(adenosine diphosphate ribose) synthetase inhibitors. Yamagami, T., Miwa, A., Takasawa, S., Yamamoto, H., Okamoto, H. Cancer Res. (1985) [Pubmed]
  31. Inhibition of alloxan action in isolated pancreatic islets by superoxide dismutase, catalase, and a metal chelator. Fischer, L.J., Hamburger, S.A. Diabetes (1980) [Pubmed]
  32. Hydrogen peroxide inhibits IL-12 p40 induction in macrophages by inhibiting c-rel translocation to the nucleus through activation of calmodulin protein. Khan, N., Rahim, S.S., Boddupalli, C.S., Ghousunnissa, S., Padma, S., Pathak, N., Thiagarajan, D., Hasnain, S.E., Mukhopadhyay, S. Blood (2006) [Pubmed]
  33. Diabetic embryopathy in C57BL/6J mice. Altered fetal sex ratio and impact of the splotch allele. Machado, A.F., Zimmerman, E.F., Hovland, D.N., Weiss, R., Collins, M.D. Diabetes (2001) [Pubmed]
  34. Ebselen and cytokine-induced nitric oxide synthase expression in insulin-producing cells. de-Mello, M.A., Flodström, M., Eizirik, D.L. Biochem. Pharmacol. (1996) [Pubmed]
  35. Aldose reductase and sorbitol dehydrogenase distribution in rat kidney. Corder, C.N., Collins, J.G., Brannan, T.S., Sharma, J. J. Histochem. Cytochem. (1977) [Pubmed]
  36. Critical role of cholic acid for development of hypercholesterolemia and gallstones in diabetic mice. Wang, J., Gåfvels, M., Rudling, M., Murphy, C., Björkhem, I., Einarsson, C., Eggertsen, G. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  37. Large scale isolation, growth, and function of porcine neonatal islet cells. Korbutt, G.S., Elliott, J.F., Ao, Z., Smith, D.K., Warnock, G.L., Rajotte, R.V. J. Clin. Invest. (1996) [Pubmed]
  38. Migrating myoelectrical complex of the small intestine. An intrinsic activity mediated by the vagus. Ruckebusch, Y., Bueno, L. Gastroenterology (1977) [Pubmed]
 
WikiGenes - Universities