The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Modeling and alanine scanning mutagenesis studies of recombinant pokeweed antiviral protein.

The Phytolacca americana-derived naturally occurring ribosome inhibitory protein pokeweed antiviral protein ( PAP) is an N-glycosidase that catalytically removes a specific adenine residue from the stem loop of ribosomal RNA. We have employed molecular modeling studies using a novel model of PAP-RNA complexes and site-directed mutagenesis combined with bioassays to evaluate the importance of the residues at the catalytic site and a putative RNA binding active center cleft between the catalytic site and C-terminal domain for the enzymatic deadenylation of ribosomal RNA by PAP. As anticipated, alanine substitutions by site-directed mutagenesis of the PAP active site residues Tyr(72), Tyr(123), Glu(176), and Arg(179) that directly participate in the catalytic deadenylation of RNA resulted in greater than 3 logs of loss in depurinating and ribosome inhibitory activity. Similarly, alanine substitution of the conserved active site residue Trp(208), which results in the loss of stabilizing hydrophobic interactions with the ribose as well as a hydrogen bond to the phosphate backbone of the RNA substrate, caused greater than 3 logs of loss in enzymatic activity. By comparison, alanine substitutions of residues (28)KD(29), (80)FE(81), (111)SR(112), (166)FL(167) that are distant from the active site did not significantly reduce the enzymatic activity of PAP. Our modeling studies predicted that the residues of the active center cleft could via electrostatic interactions contribute to both the correct orientation and stable binding of the substrate RNA molecule in the active site pocket. Notably, alanine substitutions of the highly conserved, charged, and polar residues of the active site cleft including (48)KY(49), (67)RR(68), (69)NN(70), and (90)FND(92) substantially reduced the depurinating and ribosome inhibitory activity of PAP. These results provide unprecedented evidence that besides the active site residues of PAP, the conserved, charged, and polar side chains located at its active center cleft also play a critical role in the PAP-mediated depurination of ribosomal RNA.[1]

References

  1. Modeling and alanine scanning mutagenesis studies of recombinant pokeweed antiviral protein. Rajamohan, F., Pugmire, M.J., Kurinov, I.V., Uckun, F.M. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities