The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

11beta-hydroxysteroid dehydrogenase functions reversibly as an oxidoreductase in the rat hippocampus in vivo.

The localization in the brain and metabolism of 3H-labeled corticosterone (B) and 11-dehydrocorticosterone (A) of high specific radioactivity was determined after stereotaxic injection into the hippocampus of anesthetized rats. [3H]B was cleared very rapidly with, on average, only about 7% being recovered after 5 min and 0.5% after 30 min. Most of this 3H-radioactivity was localized in the area surrounding the site of injection with little diffusion to adjacent areas. These findings make it possible to compare the short term metabolism of [3H]A and [3H]B in different lobes of the hippocampus in the same animal and establish their local equilibrium point in vivo. Under these conditions, about 5% conversion of each steroid to the other was observed in contrast to the situation in cultured hippocampal cells where 11beta-hydroxysteroid dehydrogenase (11-HSD) has been shown by others to act primarily as a reductase catalyzing the conversion of A to B. This method can also be used to study the effect of inhibitors such as 11alpha-hydroxyprogesterone, applied locally in the brain, on the metabolism of corticosteroids. The rate of conversion [3H]B or [3H]A to their dihydro- and tetrahydro-derivatives capable of modulating the GABAa receptor in the hippocampus was much lower than their interconversion. Thus, factors which influence the direction of the 11-HSD catalyzed reaction are important in regulating not only salt appetite and blood pressure but also the levels of neuroactive metabolites of corticosterone.[1]


  1. 11beta-hydroxysteroid dehydrogenase functions reversibly as an oxidoreductase in the rat hippocampus in vivo. Jellinck, P.H., Pavlides, C., Sakai, R.R., McEwen, B.S. J. Steroid Biochem. Mol. Biol. (1999) [Pubmed]
WikiGenes - Universities