The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

SureCN4380327     11-hydroxy-17-(2- hydroxyethanoyl)-10,13...

Synonyms: Oprea1_234277, CTK8J5350, AKOS015964940, AC1L97Y2, ST50411357, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CORTICOSTERONE


Psychiatry related information on CORTICOSTERONE

  • Insulin and corticosterone, which are known to affect hypothalamic NPY and CRH expression, were not different between these two groups, making it unlikely that they can account for the differences in either feeding behavior or hypothalamic peptide expression [6].
  • Here, we show that sleep deprivation inhibits adult neurogenesis at a time when circulating levels of corticosterone are elevated [7].
  • Prenatally-stressed (PS) rats also show behaviour consistent with depression, including a phase-shift in their circadian rhythm for corticosterone, sleep abnormalities, a hedonic deficit and greater acquisition of learned helplessness under appropriate conditions [8].
  • Rats that exhibit high rates of locomotor activity and sustained exploration in such an environment also exhibit high concentrations of stress-induced plasma corticosterone, linking this behavior to the stress system [9].
  • After 24 hr of maternal deprivation, significant elevations in ACTH and the naturally occurring glucocorticoid corticosterone (CORT) are observed during the stress-hyporesponsive period [10].

High impact information on CORTICOSTERONE


Chemical compound and disease context of CORTICOSTERONE


Biological context of CORTICOSTERONE


Anatomical context of CORTICOSTERONE

  • Recombinant IRAP specifically inhibited IL-1 bioactivity on T cells and endothelial cells in vitro and was a potent inhibitor of IL-1 induced corticosterone production in vivo [25].
  • Hormones could also contribute to the control of this transmitter choice, and McLennan et al. recently reported that corticosterone treatment of whole superior cervical ganglia (SCG) greatly inhibited the cholinergic development of these ganglia in culture [26].
  • 1. Corticosterone binds with high affinity to MRs predominantly localized in limbic brain (hippocampus) and with a 10-fold lower affinity to GRs that are widely distributed in brain [27].
  • Lymphocytes appear to be the most likely source of an adrenocorticotropin-like substance that is responsible for the increased corticosterone, since spleen cells from the virus-infected, but not from control or dexamethasone-treated, hypophysectomized mice showed positive immunofluorescence with antibody to adrenocorticotropin-(1-13 amide) [3].
  • The rat adrenal hormone corticosterone can cross the blood-brain barrier and bind to two intracellular receptor populations in the brain--the mineralocorticoid and glucocorticoid receptors [28].

Associations of CORTICOSTERONE with other chemical compounds


Gene context of CORTICOSTERONE

  • Here, we report a 1.95 A crystal structure of the MR ligand binding domain containing a single C808S mutation bound to corticosterone and the fourth LXXLL motif of steroid receptor coactivator-1 (SRC1-4) [34].
  • Inhibition of ACTH secretion by ion channel blockers or corticosterone has potent inhibitory effects on percentages of CRH-bound cells [35].
  • We also show that corticosterone is normally induced in IL-6-deficient mice, demonstrating that IL-6 is not required for the activation of the hypothalamic-pituitary-adrenal axis [36].
  • In addition, IL-1ra and 35F5 significantly blocked the ability of IL-1 to stimulate egress of PMN from bone marrow, to induce a transient neutrophilia, and to elevate serum levels of hepatic acute phase proteins, IL-6, and corticosterone [37].
  • It does this by maintaining ACTH and corticosterone levels, not only under stress but also under basal conditions [38].

Analytical, diagnostic and therapeutic context of CORTICOSTERONE


  1. Disorders of steroid 11 beta-hydroxylase isozymes. White, P.C., Curnow, K.M., Pascoe, L. Endocr. Rev. (1994) [Pubmed]
  2. A transgenic model of visceral obesity and the metabolic syndrome. Masuzaki, H., Paterson, J., Shinyama, H., Morton, N.M., Mullins, J.J., Seckl, J.R., Flier, J.S. Science (2001) [Pubmed]
  3. Virus-induced corticosterone in hypophysectomized mice: a possible lymphoid adrenal axis. Smith, E.M., Meyer, W.J., Blalock, J.E. Science (1982) [Pubmed]
  4. In vivo stimulation and restoration of the immune response by the noninflammatory fragment 163-171 of human interleukin 1 beta. Boraschi, D., Nencioni, L., Villa, L., Censini, S., Bossù, P., Ghiara, P., Presentini, R., Perin, F., Frasca, D., Doria, G. J. Exp. Med. (1988) [Pubmed]
  5. Effect of the long-term administration of corticotropin-releasing factor on the pituitary-adrenal and pituitary-gonadal axis in the male rat. Rivier, C., Vale, W. J. Clin. Invest. (1985) [Pubmed]
  6. Effect of a high-fat diet on food intake and hypothalamic neuropeptide gene expression in streptozotocin diabetes. Chavez, M., Seeley, R.J., Havel, P.J., Friedman, M.I., Matson, C.A., Woods, S.C., Schwartz, M.W. J. Clin. Invest. (1998) [Pubmed]
  7. From the Cover: Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. Mirescu, C., Peters, J.D., Noiman, L., Gould, E. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  8. Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Weinstock, M. Prog. Neurobiol. (2001) [Pubmed]
  9. Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: differential expression of stress-related molecules. Kabbaj, M., Devine, D.P., Savage, V.R., Akil, H. J. Neurosci. (2000) [Pubmed]
  10. Maternal deprivation effect on the infant's neural stress markers is reversed by tactile stimulation and feeding but not by suppressing corticosterone. van Oers, H.J., de Kloet, E.R., Whelan, T., Levine, S. J. Neurosci. (1998) [Pubmed]
  11. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Coste, S.C., Kesterson, R.A., Heldwein, K.A., Stevens, S.L., Heard, A.D., Hollis, J.H., Murray, S.E., Hill, J.K., Pantely, G.A., Hohimer, A.R., Hatton, D.C., Phillips, T.J., Finn, D.A., Low, M.J., Rittenberg, M.B., Stenzel, P., Stenzel-Poore, M.P. Nat. Genet. (2000) [Pubmed]
  12. The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing's disease. Westphal, C.H., Muller, L., Zhou, A., Zhu, X., Bonner-Weir, S., Schambelan, M., Steiner, D.F., Lindberg, I., Leder, P. Cell (1999) [Pubmed]
  13. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Timpl, P., Spanagel, R., Sillaber, I., Kresse, A., Reul, J.M., Stalla, G.K., Blanquet, V., Steckler, T., Holsboer, F., Wurst, W. Nat. Genet. (1998) [Pubmed]
  14. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Luo, X., Ikeda, Y., Parker, K.L. Cell (1994) [Pubmed]
  15. Adrenocortical tissue formed by transplantation of normal clones of bovine adrenocortical cells in scid mice replaces the essential functions of the animals' adrenal glands. Thomas, M., Northrup, S.R., Hornsby, P.J. Nat. Med. (1997) [Pubmed]
  16. Sex steroid regulation of macrophage migration inhibitory factor in normal and inflamed colon in the female rat. Houdeau, E., Moriez, R., Leveque, M., Salvador-Cartier, C., Waget, A., Leng, L., Bueno, L., Bucala, R., Fioramonti, J. Gastroenterology (2007) [Pubmed]
  17. Obesity on a high-fat diet: role of hypothalamic galanin in neurons of the anterior paraventricular nucleus projecting to the median eminence. Leibowitz, S.F., Akabayashi, A., Wang, J. J. Neurosci. (1998) [Pubmed]
  18. Glucocorticoid resistance in humans and nonhuman primates. Brandon, D.D., Markwick, A.J., Chrousos, G.P., Loriaux, D.L. Cancer Res. (1989) [Pubmed]
  19. Partial purification and characterization of the defective cyclic adenosine 3':5'-monophosphate binding protein kinase from adrenocortical carcinoma. Sharma, R.K., Shanker, G., Ahrens, H., Ahmed, N.K. Cancer Res. (1977) [Pubmed]
  20. A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults. Sapolsky, R.M. J. Neurosci. (1985) [Pubmed]
  21. The role of neuropeptide Y in the antiobesity action of the obese gene product. Stephens, T.W., Basinski, M., Bristow, P.K., Bue-Valleskey, J.M., Burgett, S.G., Craft, L., Hale, J., Hoffmann, J., Hsiung, H.M., Kriauciunas, A. Nature (1995) [Pubmed]
  22. Early life experience alters response of adult neurogenesis to stress. Mirescu, C., Peters, J.D., Gould, E. Nat. Neurosci. (2004) [Pubmed]
  23. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. Ahima, R.S., Prabakaran, D., Flier, J.S. J. Clin. Invest. (1998) [Pubmed]
  24. Lactation as a model for naturally reversible hypercorticalism plasticity in the mechanisms governing hypothalamo-pituitary- adrenocortical activity in rats. Fischer, D., Patchev, V.K., Hellbach, S., Hassan, A.H., Almeida, O.F. J. Clin. Invest. (1995) [Pubmed]
  25. Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Carter, D.B., Deibel, M.R., Dunn, C.J., Tomich, C.S., Laborde, A.L., Slightom, J.L., Berger, A.E., Bienkowski, M.J., Sun, F.F., McEwan, R.N. Nature (1990) [Pubmed]
  26. Hormonal control of neurotransmitter choice in sympathetic neurone cultures. Fukada, K. Nature (1980) [Pubmed]
  27. Brain corticosteroid receptor balance in health and disease. De Kloet, E.R., Vreugdenhil, E., Oitzl, M.S., Joëls, M. Endocr. Rev. (1998) [Pubmed]
  28. Control of neuronal excitability by corticosteroid hormones. Joëls, M., de Kloet, E.R. Trends Neurosci. (1992) [Pubmed]
  29. Corticosteroid modulation of hippocampal potentials: increased effect with aging. Kerr, D.S., Campbell, L.W., Hao, S.Y., Landfield, P.W. Science (1989) [Pubmed]
  30. The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Engelmann, M., Landgraf, R., Wotjak, C.T. Frontiers in neuroendocrinology. (2004) [Pubmed]
  31. Steroid production in the thymus: implications for thymocyte selection. Vacchio, M.S., Papadopoulos, V., Ashwell, J.D. J. Exp. Med. (1994) [Pubmed]
  32. Regulation of renal Na-K-ATPase in the rat. Role of the natural mineralo- and glucocorticoid hormones. Mujais, S.K., Chekal, M.A., Jones, W.J., Hayslett, J.P., Katz, A.I. J. Clin. Invest. (1984) [Pubmed]
  33. Selective deletion of leptin receptor in neurons leads to obesity. Cohen, P., Zhao, C., Cai, X., Montez, J.M., Rohani, S.C., Feinstein, P., Mombaerts, P., Friedman, J.M. J. Clin. Invest. (2001) [Pubmed]
  34. Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor. Li, Y., Suino, K., Daugherty, J., Xu, H.E. Mol. Cell (2005) [Pubmed]
  35. Structure-function correlates in the corticotropes of the anterior pituitary. Childs, G.V. Frontiers in neuroendocrinology. (1992) [Pubmed]
  36. Defective inflammatory response in interleukin 6-deficient mice. Fattori, E., Cappelletti, M., Costa, P., Sellitto, C., Cantoni, L., Carelli, M., Faggioni, R., Fantuzzi, G., Ghezzi, P., Poli, V. J. Exp. Med. (1994) [Pubmed]
  37. Inhibition of interleukin 1 (IL-1) binding and bioactivity in vitro and modulation of acute inflammation in vivo by IL-1 receptor antagonist and anti-IL-1 receptor monoclonal antibody. McIntyre, K.W., Stepan, G.J., Kolinsky, K.D., Benjamin, W.R., Plocinski, J.M., Kaffka, K.L., Campen, C.A., Chizzonite, R.A., Kilian, P.L. J. Exp. Med. (1991) [Pubmed]
  38. The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. Tanoue, A., Ito, S., Honda, K., Oshikawa, S., Kitagawa, Y., Koshimizu, T.A., Mori, T., Tsujimoto, G. J. Clin. Invest. (2004) [Pubmed]
  39. Corticosterone: a critical factor in an opioid form of stress-induced analgesia. MacLennan, A.J., Drugan, R.C., Hyson, R.L., Maier, S.F., Madden, J., Barchas, J.D. Science (1982) [Pubmed]
  40. Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids. MacPhee, I.A., Antoni, F.A., Mason, D.W. J. Exp. Med. (1989) [Pubmed]
  41. Down-regulation of hepatic and renal 11 beta-hydroxysteroid dehydrogenase in rats with liver cirrhosis. Escher, G., Nawrocki, A., Staub, T., Vishwanath, B.S., Frey, B.M., Reichen, J., Frey, F.J. Gastroenterology (1998) [Pubmed]
WikiGenes - Universities