The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Excitatory and inhibitory roles of central ganglia in initiation of the insect ecdysis behavioural sequence.

Insects shed their old cuticle by performing the ecdysis behavioural sequence. To activate each subunit of this set of programmed behaviours in Manduca sexta, specific central ganglia are targeted by pre-ecdysis-triggering (PETH) and ecdysis-triggering (ETH) hormones secreted from Inka cells. PETH and ETH act on each abdominal ganglion to initiate, within a few minutes, pre-ecdysis I and II, respectively. Shortly thereafter, ETH targets the tritocerebrum and suboesophageal ganglion to activate the ecdysis neural network in abdominal ganglia through the elevation of cyclic GMP (cGMP) levels. However, the onset of ecdysis behaviour is delayed by inhibitory factor(s) from the cephalic and thoracic ganglia. The switch from pre-ecdysis to ecdysis is controlled by an independent clock in each abdominal ganglion and is considerably accelerated after removal of the head and thorax. Eclosion hormone (EH) appears to be one of the central signals inducing elevation of cGMP levels and ecdysis, but these actions are quite variable and usually restricted to anterior ganglia. EH treatment of desheathed ganglia also elicits strong production of cGMP in intact ganglia, suggesting that this induction occurs via the release of additional downstream factors. Our data suggest that the initiation of pre-ecdysis and the transition to ecdysis are regulated by stimulatory and inhibitory factors released within the central nervous system after the initial actions of PETH and ETH.[1]

References

 
WikiGenes - Universities