The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A novel H(+)-coupled oligopeptide transporter ( OPT3) from Caenorhabditis elegans with a predominant function as a H(+) channel and an exclusive expression in neurons.

We have cloned and functionally characterized a novel, neuron-specific, H(+)-coupled oligopeptide transporter ( OPT3) from Caenorhabditis elegans that functions predominantly as a H(+) channel. The opt3 gene is approximately 4.4 kilobases long and consists of 13 exons. The cDNA codes for a protein of 701 amino acids with 11 putative transmembrane domains. When expressed in mammalian cells and in Xenopus laevis oocytes, OPT3 cDNA induces H(+)-coupled transport of the dipeptide glycylsarcosine. Electrophysiological studies of the transport function of OPT3 in Xenopus oocytes show that this transporter, although capable of mediating H(+)-coupled peptide transport, functions predominantly as a H(+) channel. The H(+) channel activity of OPT3 is approximately 3-4-fold greater than the H(+)/peptide cotransport activity as determined by measurements of H(+) gradient-induced inward currents in the absence and presence of the dipeptide using the two-microelectrode voltage clamp technique. A downhill influx of H(+) was accompanied by a large intracellular acidification as evidenced from the changes in intracellular pH using an ion-selective microelectrode. The H(+) channel activity exhibits a K(0.5)(H) of 1.0 microM at a membrane potential of -50 mV. At the level of primary structure, OPT3 has moderate homology with OPT1 and OPT2, two other H(+)-coupled oligopeptide transporters previously cloned from C. elegans. Expression studies using the opt3::gfp fusion constructs in transgenic C. elegans demonstrate that opt3 gene is exclusively expressed in neurons. OPT3 may play an important physiological role as a pH balancer in the maintenance of H(+) homeostasis in C. elegans.[1]

References

  1. A novel H(+)-coupled oligopeptide transporter (OPT3) from Caenorhabditis elegans with a predominant function as a H(+) channel and an exclusive expression in neurons. Fei, Y.J., Romero, M.F., Krause, M., Liu, J.C., Huang, W., Ganapathy, V., Leibach, F.H. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities