The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The induction of SOS function in Escherichia coli K-12/PQ37 by 4-nitroquinoline oxide (4-NQO) and fecapentaenes-12 and -14 is bile salt sensitive: implications for colon carcinogenesis.

The response of Escherichia coli to genotoxic agents involves the triggering of a complex system of genes known as the SOS response. In E. coli PQ37, a test organism used for the assessment of genotoxicity, lacZ, the beta-galactosidase gene is placed under the control of sfiA, one of the SOS genes through an operon fusion. The induction of beta-galactosidase activity, when the organism is exposed to genotoxic agents, is an indirect measure of the genotoxic activity of the test compound. Incubation of E. coli PQ37 with either 4-nitroquinoline oxide (4-NQO) or one of the fecal mutagens, fecapentaene-12 or -14 (F-12 or F-14) in the presence of sodium taurocholate or sodium deoxycholate resulted in a significant enhancement of induction of beta-galactosidase activity. The molecular mechanisms of 4-NQO-induced mutagenesis in E. coli are similar to those of the effects of UV light in which both replication-dependent and repair-dependent pathways of mutagenesis exist. Since E. coli PQ37 is excision-repair-deficient, alternate pathways are involved in this system. Bile salts by themselves do not trigger the SOS response, and hence their role in enhancing the SOS-inducing potency of mutagens may involve the potentiation of the cleavage-inactivation of lexA ( repressor of SOS) by the protein product of the SOS-controlled gene, recA. The potentiating effect of bile salts on the fecal mutagens, F-12 and F-14, has implications in their suspected role in colon carcinogenesis associated with high-fat, low-fiber diets.[1]

References

 
WikiGenes - Universities