The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Farnesoid X receptor responds to bile acids and represses cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription.

Cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription is repressed by bile acids. The goal of this study is to elucidate the mechanism of CYP7A1 transcription by bile acid- activated farnesoid X receptor (FXR) in its native promoter and cellular context and to identify FXR response elements in the gene. In Chinese hamster ovary cells transfected with retinoid X receptor alpha (RXRalpha)/FXR, only chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) were able to stimulate a heterologous promoter/reporter containing an ecdysone response element. In HepG2 cells, all bile acids (25 microM) were able to repress CYP7A1/luciferase reporter activity, and only CDCA and DCA further repressed reporter activity when cotransfected with RXRalpha/FXR. The concentration of CDCA required to inhibit 50% of reporter activity (IC(50)) was determined to be approximately 25 microM without FXR and 10 microM with FXR. Deletion analysis revealed that the bile acid response element located between nucleotides -148 and -128 was the FXR response element, but RXRalpha/FXR did not bind to this sequence. These results suggest that bile acid-activated FXR exerts its inhibitory effect on CYP7A1 transcription by an indirect mechanism, in contrast to the stimulation and binding of FXR to intestinal bile acid-binding protein gene promoter. Results also reveal that bile acid receptors other than FXR are present in HepG2 cells.[1]


WikiGenes - Universities