The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Expression of aquaporin-4 water channels in rat cholangiocytes.

We recently reported that secretin induces the exocytic insertion of functional aquaporin-1 water channels (AQP1) into the apical membrane of cholangiocytes and proposed that this was a key process in ductal bile secretion. Because AQP1 is present on the basolateral cholangiocyte membrane in low amounts, we hypothesized that another AQP must be expressed at this domain to facilitate transbasolateral water movement. Thus, we investigated the expression, subcellular localization, possible regulation by secretin, and functional activity of AQP4, a mercury-insensitive water channel expressed in other fluid transporting epithelia. Using reverse transcription-polymerase chain reaction (RT-PCR) on RNA prepared from purified rat cholangiocytes, we amplified a product of 311 bp that was 100% homologous to the reported AQP4 sequence. RNase protection assay confirmed the presence of an appropriate size transcript for AQP4 in cholangiocytes. Immunoblotting detected a band of approximately 31 kd corresponding to AQP4 in basolateral but not apical membranes of cholangiocytes. Secretin did not alter the amount of plasma membrane AQP4 but, as expected, induced AQP1 redistribution from intracellular to apical plasma membranes. Functional studies showed that AQP4 accounts for about 15% of total cholangiocyte membrane water permeability. Our results indicate that: (1) cholangiocytes express AQP4 messenger RNA (mRNA) and protein and (2) in contrast to AQP1, which is targeted to the apical cholangiocyte membrane by secretin, AQP4 is constitutively expressed on the basolateral cholangiocyte membrane and is secretin unresponsive. The data suggest that AQP4 facilitates the basolateral transport of water in cholangiocytes, a process that could be relevant to ductal bile formation.[1]


  1. Expression of aquaporin-4 water channels in rat cholangiocytes. Marinelli, R.A., Pham, L.D., Tietz, P.S., LaRusso, N.F. Hepatology (2000) [Pubmed]
WikiGenes - Universities