The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Chlorocatechol detection based on a clc operon/reporter gene system.

A sensitive and selective sensing system for chlorocatechols (3-chlorocatechol and 4-chlorocatechol) was developed based on Pseudomonas putida bacteria harboring the plasmid pSMM50R-B'. In this plasmid, the regulatory protein of the clc operon, ClcR, controls the expression of the reporter enzyme beta-galactosidase. When bacteria containing components of the clc operon are grown in the presence of chlorocatechols, ClcR activates the clcA promoter, which is located upstream from the beta-galactosidase gene. Thus, the concentration of chlorocatechols can be related to the production of beta-galactosidase in the bacteria. The concentration of beta-galactosidase expressed in the bacteria was determined by measuring the chemiluminescence signal emitted with the use of a 1,2-dioxetane substrate. ClcR has a high specificity for chlorocatechols and provides the sensing system with high selectivity. This was demonstrated by evaluating several structurally related organic compounds as potential interfering agents. Both 3-chlorocatechol and 4-chlorocatechol can be detected with this sensing system at concentrations as low as 8 x 10(-10) and 2 x 10(-9) M, respectively, using a 2-h induction period. In the case of 3-chlorocatechol, a highly selective sensing system was developed that can detect this species at concentrations as low as 6 x 10(-8) M after a 5-min induction period; the presence of 4-chlorocatechol at concentrations as high as 2 x 10(-4) M did not interfere with this system.[1]

References

  1. Chlorocatechol detection based on a clc operon/reporter gene system. Guan, X., Ramanathan, S., Garris, J.P., Shetty, R.S., Ensor, M., Bachas, L.G., Daunert, S. Anal. Chem. (2000) [Pubmed]
 
WikiGenes - Universities