The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

PubChem18911     3-chlorobenzene-1,2-diol

Synonyms: SureCN71077, CPD-9151, ACMC-1AD6K, AG-E-76317, CHEBI:27715, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of C05618


High impact information on C05618


Chemical compound and disease context of C05618


Biological context of C05618


Associations of C05618 with other chemical compounds


Gene context of C05618

  • However, partially purified catechol 2,3-dioxygenase of P. putida GJ31 converted 3-chlorocatechol to 2-hydroxy-cis,cis-muconic acid [17].
  • Catechol 2,3-dioxygenase preparations did not oxidize 3-chlorocatechol [18].

Analytical, diagnostic and therapeutic context of C05618


  1. Characterization of two alternative promoters for integrase expression in the clc genomic island of Pseudomonas sp. strain B13. Sentchilo, V., Zehnder, A.J., van der Meer, J.R. Mol. Microbiol. (2003) [Pubmed]
  2. Crystal structure of 3-chlorocatechol 1,2-dioxygenase key enzyme of a new modified ortho-pathway from the Gram-positive Rhodococcus opacus 1CP grown on 2-chlorophenol. Ferraroni, M., Kolomytseva, M.P., Solyanikova, I.P., Scozzafava, A., Golovleva, L.A., Briganti, F. J. Mol. Biol. (2006) [Pubmed]
  3. Altering catalytic properties of 3-chlorocatechol-oxidizing extradiol dioxygenase from Sphingomonas xenophaga BN6 by random mutagenesis. Riegert, U., Bürger, S., Stolz, A. J. Bacteriol. (2001) [Pubmed]
  4. TfdD(II), one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro- cis, cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate. Laemmli, C.M., Schönenberger, R., Suter, M., Zehnder, A.J., van der Meer, J.R. Arch. Microbiol. (2002) [Pubmed]
  5. Molecular breeding of 2,3-dihydroxybiphenyl 1,2-dioxygenase for enhanced resistance to 3-chlorocatechol. Ohnishi, K., Okuta, A., Ju, J., Hamada, T., Misono, H., Harayama, S. J. Biochem. (2004) [Pubmed]
  6. Interaction of two LysR-type regulatory proteins CatR and ClcR with heterologous promoters: functional and evolutionary implications. Parsek, M.R., McFall, S.M., Shinabarger, D.L., Chakrabarty, A.M. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  7. Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Frantz, B., Chakrabarty, A.M. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  8. The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates. Vaillancourt, F.H., Labbe, G., Drouin, N.M., Fortin, P.D., Eltis, L.D. J. Biol. Chem. (2002) [Pubmed]
  9. DNase I footprinting, DNA bending and in vitro transcription analyses of ClcR and CatR interactions with the clcABD promoter: evidence of a conserved transcriptional activation mechanism. McFall, S.M., Klem, T.J., Fujita, N., Ishihama, A., Chakrabarty, A.M. Mol. Microbiol. (1997) [Pubmed]
  10. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. Mars, A.E., Kingma, J., Kaschabek, S.R., Reineke, W., Janssen, D.B. J. Bacteriol. (1999) [Pubmed]
  11. Metabolism of 2-chlorobenzoic acid in Pseudomonas stutzeri. Kozlovsky, S.A., Kunc, F. Folia Microbiol. (Praha) (1995) [Pubmed]
  12. 2-chloromuconate and ClcR-mediated activation of the clcABD operon: in vitro transcriptional and DNase I footprint analyses. McFall, S.M., Parsek, M.R., Chakrabarty, A.M. J. Bacteriol. (1997) [Pubmed]
  13. Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Adams, R.H., Huang, C.M., Higson, F.K., Brenner, V., Focht, D.D. Appl. Environ. Microbiol. (1992) [Pubmed]
  14. Whole-cell biosensing of 3-chlorocatechol in liquids and soils. Guan, X., D'Angelo, E., Luo, W., Daunert, S. Analytical and bioanalytical chemistry. (2002) [Pubmed]
  15. Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Arensdorf, J.J., Focht, D.D. Appl. Environ. Microbiol. (1994) [Pubmed]
  16. Initial steps in the degradation of benzene sulfonic acid, 4-toluene sulfonic acids, and orthanilic acid in Alcaligenes sp. strain O-1. Thurnheer, T., Zürrer, D., Höglinger, O., Leisinger, T., Cook, A.M. Biodegradation (1990) [Pubmed]
  17. Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. Mars, A.E., Kasberg, T., Kaschabek, S.R., van Agteren, M.H., Janssen, D.B., Reineke, W. J. Bacteriol. (1997) [Pubmed]
  18. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Klecka, G.M., Gibson, D.T. Appl. Environ. Microbiol. (1981) [Pubmed]
WikiGenes - Universities