The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effects of intravenous Zaprinast and inhaled nitric oxide on pulmonary hemodynamics and gas exchange in an ovine model of acute respiratory distress syndrome.

BACKGROUND: Inhaled nitric oxide (No) selectively dilates the pulmonary vasculature and improves gas exchange in acute respiratory distress syndrome. Because of the very short half-life of NO, inhaled NO is administered continuously. Intravenous Zaprinast (2-o-propoxyphenyl-8-azapurin-6-one), a cyclic guanosine monophosphate phosphodiesterase inhibitor, increases the efficacy and prolongs the duration of action of inhaled NO in models of acute pulmonary hypertension. Its efficacy in lung injury models is uncertain. The authors hypothesized that the use of intravenous Zaprinast would have similar beneficial effects when used in combination with inhaled NO to improve oxygenation and dilate the pulmonary vasculature in a diffuse model of acute lung injury. METHODS: The authors studied two groups of sheep with lung injury produced by saline lavage. In the first group, 0, 5, 10, and 20 ppm of inhaled NO were administered in a random order before and after an intravenous Zaprinast infusion (2 mg/kg bolus followed by 0.1 mg. kg-1. min-1). In the second group, inhaled NO was administered at the same concentrations before and after an intravenous infusion of Zaprinast solvent (0.05 m NaOH). RESULTS: After lavage, inhaled NO decreased pulmonary arterial pressure and resistance with no systemic hemodynamic effects, increased arterial oxygen partial pressure, and decreased venous admixture (all P < 0.05). The intravenous administration of Zaprinast alone decreased pulmonary artery pressure but worsened gas exchange (P < 0.05). Zaprinast infusion abolished the beneficial ability of inhaled NO to improve pulmonary gas exchange and reduce pulmonary artery pressure (P < 0. 05 vs. control). CONCLUSIONS: This study suggests that nonselective vasodilation induced by intravenously administered Zaprinast at the dose used in our study not only worsens gas exchange, but also abolishes the beneficial effects of inhaled NO.[1]


WikiGenes - Universities