The Drosophila cyclin D-Cdk4 complex promotes cellular growth.
Mammalian cyclin D-Cdk4 complexes have been characterized as growth factor-responsive cell cycle regulators. Their levels rise upon growth factor stimulation, and they can phosphorylate and thus neutralize Retinoblastoma (Rb) family proteins to promote an E2F-dependent transcriptional program and S-phase entry. Here we characterize the in vivo function of Drosophila Cyclin D (CycD). We find that Drosophila CycD-Cdk4 does not act as a direct G(1)/S-phase regulator, but instead promotes cellular growth (accumulation of mass). The cellular response to CycD-Cdk4-driven growth varied according to cell type. In undifferentiated proliferating wing imaginal cells, CycD-Cdk4 caused accelerated cell division (hyperplasia) without affecting cell cycle phasing or cell size. In endoreplicating salivary gland cells, CycD-Cdk4 caused excessive DNA replication and cell enlargement (hypertrophy). In differentiating eyes, CycD-Cdk4 caused cell enlargement (hypertrophy) in post-mitotic cells. Interaction tests with a DROSOPHILA: Rb homolog, RBF, indicate that CycD-Cdk4 can counteract the cell cycle suppressive effects of RBF, but that its growth promoting activity is mediated at least in part via other targets.[1]References
- The Drosophila cyclin D-Cdk4 complex promotes cellular growth. Datar, S.A., Jacobs, H.W., de la Cruz, A.F., Lehner, C.F., Edgar, B.A. EMBO J. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg