Redox-regulated RNA helicase expression.
In photosynthetic organisms it is becoming increasingly evident that light-driven shifts in redox potential act as a sensor that initiates alterations in gene expression at both the level of transcription and translation. This report provides evidence that the expression of a cyanobacterial RNA helicase gene, crhR, is controlled at the level of transcription and mRNA stability by a complex series of interacting mechanisms that are redox regulated. Transcript accumulation correlates with reduction of the electron transport chain between Q(A) in photosystem II and Q(O) in cyt b(6)f, when Synechocystis sp. strain PCC 6803 is cultured photoautotrophically or photomixotrophically and subjected to darkness and/or electron transport inhibitors or illumination that preferentially excites photosystem II. crhR mRNA stability is also regulated by a redox responsive mechanism, which differs from that affecting accumulation and does not involve signaling initiated by photoreceptors. The data are most consistent with plastoquinol/cyt b(6)f interaction as the sensor initiating a signal transduction cascade resulting in accumulation of the crhR transcript. Functionally, CrhR RNA unwinding could act as a linker between redox regulated transcription and translation. The potential for translational regulation of redox-induced gene expression through RNA helicase-catalyzed modulation of RNA secondary structure is discussed.[1]References
- Redox-regulated RNA helicase expression. Kujat, S.L., Owttrim, G.W. Plant Physiol. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg