The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effect of granulocyte-macrophage colony-stimulating factor deficiency on ovarian follicular cell function.

Granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine secreted by lymphohaemopoietic and other cell lineages, is known to influence ovarian cyclicity and embryo development. The aim of this study was to examine the effect of GM-CSF on ovarian follicular cell function using GM-CSF-deficient (GM -/-) mice. Immature GM -/- and GM +/+ mice were stimulated with eCG, and cumulus-oocyte complexes and mural granulosa cells were collected 48 h later. Expression of GM-CSF receptor (GM-CSFR) alpha and beta mRNA subunits by cumulus-oocyte complexes and mural granulosa cells was examined using RT-PCR. Cumulus-oocyte complexes from both genotypes were found to express mRNA for the GM-CSFRalpha-subunit only, while the mural granulosa cells expressed both the alpha and beta receptor subunits. Cumulus-oocyte complexes recovered from GM -/- mice had approximately twice the number of cumulus cells per cumulus-oocyte complex than did those of GM +/+ mice (P < 0.05), even though the growth-promoting activity of denuded GM -/- oocytes was found to be equivalent to that of wild-type oocytes. GM-CSF deficiency was associated with marginally increased DNA synthesis in cumulus cells and significantly (P < 0.05) lower progesterone production by mural granulosa cells recovered from GM -/- compared with those recovered from GM +/+ mice. The addition of rec-mGM-CSF in vitro did not affect DNA synthesis in either cell type or progesterone production by mural granulosa cells, irrespective of GM-CSF status. There was no effect of GM-CSF deficiency on the capacity of FSH and insulin-like growth factor I to stimulate DNA synthesis in cumulus-oocyte complexes (approximately 15- and threefold, respectively) and in mural granulosa cells (approximately two- and threefold, respectively). Taken together, these data show that GM-CSF influences events associated with follicular maturation in mice. The effects of GM-CSF are not exerted directly in granulosa or cumulus cells, but appear to be mediated indirectly, perhaps through the agency of steroidogenesis-regulating secretions of local macrophage populations residing in the theca.[1]


  1. Effect of granulocyte-macrophage colony-stimulating factor deficiency on ovarian follicular cell function. Gilchrist, R.B., Rowe, D.B., Ritter, L.J., Robertson, S.A., Norman, R.J., Armstrong, D.T. J. Reprod. Fertil. (2000) [Pubmed]
WikiGenes - Universities