The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Differential regulation of two forms of gonadotropin-releasing hormone messenger ribonucleic acid in human granulosa-luteal cells.

Until recently, the primate brain was thought to contain only one form of GnRH known as mammalian GnRH (GnRH-I). The recent cloning of a second form of GnRH (GnRH-II) with characteristics of chicken GnRH-II in the primate brain has prompted a reevaluation of the role of GnRH in reproductive functions. In the present study, we investigated the hormonal regulation of GnRH-II messenger RNA (mRNA) and its functional role in the human granulosa-luteal cells (hGLCs), and we provided novel evidence for differential hormonal regulation of GnRH-II vs. GnRH-I mRNA expression. Human GLCs were treated with various concentrations of GnRH-II, GnRH-II agonist (GnRH-II-a), or GnRH-I agonist (GnRH-I-a; leuprolide) in the absence or presence of FSH or human CG ( hCG). The expression levels of GnRH-II, GnRH-I, and GnRH receptor (GnRHR) mRNA were investigated using semiquantitative or competitive RT-PCR. A significant decrease in GnRH-II and GnRHR mRNA levels was observed in cells treated with GnRH-II or GnRH-II-a. In contrast, GnRH-I-a revealed a biphasic effect (up- and down-regulation) of GnRH-I and GnRHR mRNA, suggesting that GnRH-I and GnRH-II may differentially regulate GnRHR and their ligands (GnRH-I and GnRH-II). Treatment with FSH or hCG increased GnRH-II mRNA levels but decreased GnRH-I mRNA levels, further indicating that GnRH-I and GnRH-II mRNA levels are differentially regulated. To investigate the physiological role of GnRH-II, hGLCs were treated with GnRH-II or GnRH-II-a in the presence or absence of hCG, for 24 h, and progesterone secretion was measured by RIA. Both GnRH-II and GnRH-II-a inhibited basal and hCG-stimulated progesterone secretion, effects which were similar to the effects of GnRH-I treatment on ovarian steroidogenesis. Next, hGLCs were treated with various concentrations of GnRH-II, GnRH-II-a, or GnRH-I-a; and the expression levels of FSH receptor and LH receptor were investigated using semiquantitative RT-PCR. A significant down-regulation of FSH receptor and LH receptor was observed in cells treated with GnRH-II, GnRH-II-a, and GnRH-I-a, demonstrating that GnRH-II and GnRH-I may exert their antigonadotropic effect by down-regulating gonadotropin receptors. Interestingly, GnRH-II and GnRH-II-a did not affect basal and hCG-stimulated intracellular cAMP accumulation, suggesting that the antigonadotropic effect of GnRH-II may be independent of modulation of cAMP levels. Taken together, these results suggest that GnRH-II may have biological effects similar to those of GnRH-I but is under differential hormonal regulation in the human ovary.[1]

References

 
WikiGenes - Universities