The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae.

A Klebsiella pneumoniae isolate showing moderate to high-level imipenem and meropenem resistance was investigated. The MICs of both drugs were 16 microg/ml. The beta-lactamase activity against imipenem and meropenem was inhibited in the presence of clavulanic acid. The strain was also resistant to extended-spectrum cephalosporins and aztreonam. Isoelectric focusing studies demonstrated three beta-lactamases, with pIs of 7.2 (SHV-29), 6.7 (KPC-1), and 5.4 (TEM-1). The presence of bla(SHV) and bla(TEM) genes was confirmed by specific PCRs and DNA sequence analysis. Transformation and conjugation studies with Escherichia coli showed that the beta-lactamase with a pI of 6.7, KPC-1 (K. pneumoniae carbapenemase-1), was encoded on an approximately 50-kb nonconjugative plasmid. The gene, bla(KPC-1), was cloned in E. coli and shown to confer resistance to imipenem, meropenem, extended-spectrum cephalosporins, and aztreonam. The amino acid sequence of the novel carbapenem-hydrolyzing beta-lactamase, KPC-1, showed 45% identity to the pI 9.7 carbapenem-hydrolyzing beta-lactamase, Sme-1, from Serratia marcescens S6. Hydrolysis studies showed that purified KPC-1 hydrolyzed not only carbapenems but also penicillins, cephalosporins, and monobactams. KPC-1 had the highest affinity for meropenem. The kinetic studies also revealed that clavulanic acid and tazobactam inhibited KPC-1. An examination of the outer membrane proteins of the parent K. pneumoniae strain demonstrated that the strain does not express detectable levels of OmpK35 and OmpK37, although OmpK36 is present. We concluded that carbapenem resistance in K. pneumoniae strain 1534 is mainly due to production of a novel Bush group 2f, class A, carbapenem-hydrolyzing beta-lactamase, KPC-1, although alterations in porin expression may also play a role.[1]

References

  1. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Yigit, H., Queenan, A.M., Anderson, G.J., Domenech-Sanchez, A., Biddle, J.W., Steward, C.D., Alberti, S., Bush, K., Tenover, F.C. Antimicrob. Agents Chemother. (2001) [Pubmed]
 
WikiGenes - Universities