The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction.

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily, which regulate the differentiation of osteoprogenitor cells. Here we show that among members of the BMP family, BMP-4 and growth/differentiation factor 5 ( GDF-5) induce osteoblast differentiation through the activation of three receptor-regulated Smads (i.e. Smad1, Smad5 and Smad8). By contrast, BMP-6 and BMP-7 induce alkaline phosphatase activity through Smad1 and Smad5, but not through Smad8. Consistent with these findings, BMP-4 induced phosphorylation and nuclear translocation of Smad1, Smad5 and Smad8, but BMP-6 activated only Smad1 and Smad5. BMP-4 and GDF-5 are known to bind to activin receptor-like kinase 3 ( ALK-3) and/or ALK-6 (also termed BMP type IA and type IB receptors, respectively), whereas BMP-6 and BMP-7 preferentially bind to ALK-2. Compared with the effects induced by only one of the type I receptors, the combination of constitutively active forms of ALK-2 and ALK-3 (or ALK-6) more strongly induced alkaline phosphatase activity in C2C12 cells. Moreover, addition of BMP-4 and BMP-6 to C2C12 cells resulted in higher alkaline phosphatase activity than that of only one of these BMPs. The combination of ALK-2 and ALK-3 also induced higher transcriptional activity than either receptor alone. Thus, ALK-2 and ALK-3 (or ALK-6) might synergistically induce osteoblast differentiation of C2C12 cells, possibly through efficient activation of downstream signaling pathways.[1]


  1. Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. Aoki, H., Fujii, M., Imamura, T., Yagi, K., Takehara, K., Kato, M., Miyazono, K. J. Cell. Sci. (2001) [Pubmed]
WikiGenes - Universities