The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Acvr1  -  activin A receptor, type 1

Mus musculus

Synonyms: ACTR-I, ALK2, ActR-I, ActRIA, Activin receptor type I, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Acvr1

  • Our results show that mice lacking Alk2 in the neural crest display multiple craniofacial defects including cleft palate and a hypotrophic mandible [1].
  • Testicular germ cell tumours of adolescents and adults (TGCTs) and spermatocytic seminomas expressed activin type I and type II receptors (ActRI and ActRII respectively) [2].
  • Two cell lines, SKR1 and NKK1, were established from renal cell carcinomas (RCC) with different histopathologic characteristics: SKR1 from grade 3, solid type, pleomorphic cell type carcinoma in a 66-year-old male and NKK1 from grade 2, alveolar type, clear cell carcinoma in a 49-year-old female [3].
 

High impact information on Acvr1

 

Biological context of Acvr1

  • Thirdly, expression of constitutively active ALK2 in the VE, but not in the epiblast, was sufficient to rescue the PGC phenotype in Bmp4-deficient embryos [4].
  • BMP type I receptor ALK2 is essential for proper patterning at late gastrulation during mouse embryogenesis [8].
  • Furthermore, dominant-negative and antisense strategies showed that ALK2 is essential for MIS-induced signaling in two independent assays, the cellular Tlx-2 reporter gene assay and the Müllerian duct regression organ culture assay [9].
  • Collectively, these results indicate that the BMP type I receptor ALK2 in endothelial cells plays a critical non-redundant role in early phases of endocardial cushion formation during cardiac morphogenesis [10].
  • The mouse ActRIA gene is encoded by 10 exons and spans approximately 40 kb [11].
 

Anatomical context of Acvr1

  • In contrast, osteopontin (Spp1) transcript levels in activated microglia were not reduced by Acvr1 signalling [12].
  • Thus, ALK-2 and ALK-3 (or ALK-6) might synergistically induce osteoblast differentiation of C2C12 cells, possibly through efficient activation of downstream signaling pathways [13].
  • To determine in which germ layer ActRIA functions during gastrulation, we performed reciprocal chimera analyses [14].
  • Expression analyses revealed that ALK2 is present in all MIS target tissues including the mesenchyme surrounding the epithelial Müllerian duct [9].
  • Craniofacial defects in mice lacking BMP type I receptor Alk2 in neural crest cells [1].
 

Associations of Acvr1 with chemical compounds

 

Physical interactions of Acvr1

  • Here we report that Alk8 also forms active signaling complexes with TGF-beta in the presence of TGF-betaRII [15].
 

Regulatory relationships of Acvr1

  • Notably, activated Acvr1 signalling gave significantly lower TBI-induced up-regulations of Gfap and Phox2a mRNA levels, indicating reductions in astroglial and neuronal reactions to injury [12].
 

Other interactions of Acvr1

  • By contrast, ALK-2 and ALK-3 immunostainings in E14 were barely detectable [16].
  • The serine/threonine transmembrane receptor ALK2 mediates Müllerian inhibiting substance signaling [9].
  • Collectively, we conclude that MIS employs a bone morphogenetic protein-like signaling pathway and uses ALK2 as its type I receptor [9].
  • Type I receptors (Alk2, Alk3 and Alk6) are the primary determinants of signaling specificity and therefore understanding their function is important in revealing the developmental roles of molecular pathways regulated by BMPs [1].
  • Moreover, in Alk2 mutants, the distal outflow tract fails to express Msx1, one of the major effectors of BMP signaling [17].
 

Analytical, diagnostic and therapeutic context of Acvr1

References

  1. Craniofacial defects in mice lacking BMP type I receptor Alk2 in neural crest cells. Dudas, M., Sridurongrit, S., Nagy, A., Okazaki, K., Kaartinen, V. Mech. Dev. (2004) [Pubmed]
  2. Human testicular germ cell tumours express inhibin subunits, activin receptors and follistatin mRNAs. van Schaik, R.H., Wierikx, C.D., Looijenga, L.H., Oosterhuis, J.W., de Jong, F.H. Br. J. Cancer (1997) [Pubmed]
  3. Establishment of two human renal cell carcinoma cell lines with different chemosensitivity. Naito, S., Kotoh, S., Goto, K., Koga, H., Hasegawa, S., Noma, H., Yamasaki, T., Kumazawa, J. Hum. Cell (1996) [Pubmed]
  4. BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. de Sousa Lopes, S.M., Roelen, B.A., Monteiro, R.M., Emmens, R., Lin, H.Y., Li, E., Lawson, K.A., Mummery, C.L. Genes Dev. (2004) [Pubmed]
  5. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. Miettinen, P.J., Ebner, R., Lopez, A.R., Derynck, R. J. Cell Biol. (1994) [Pubmed]
  6. The activin receptor-like kinase 1 gene: genomic structure and mutations in hereditary hemorrhagic telangiectasia type 2. Berg, J.N., Gallione, C.J., Stenzel, T.T., Johnson, D.W., Allen, W.P., Schwartz, C.E., Jackson, C.E., Porteous, M.E., Marchuk, D.A. Am. J. Hum. Genet. (1997) [Pubmed]
  7. Smad7 selectively interferes with different pathways of activin signaling and inhibits erythroid leukemia cell differentiation. Kitamura, K., Aota, S., Sakamoto, R., Yoshikawa, S.I., Okazaki, K. Blood (2000) [Pubmed]
  8. BMP type I receptor ALK2 is essential for proper patterning at late gastrulation during mouse embryogenesis. Komatsu, Y., Scott, G., Nagy, A., Kaartinen, V., Mishina, Y. Dev. Dyn. (2007) [Pubmed]
  9. The serine/threonine transmembrane receptor ALK2 mediates Müllerian inhibiting substance signaling. Visser, J.A., Olaso, R., Verhoef-Post, M., Kramer, P., Themmen, A.P., Ingraham, H.A. Mol. Endocrinol. (2001) [Pubmed]
  10. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Wang, J., Sridurongrit, S., Dudas, M., Thomas, P., Nagy, A., Schneider, M.D., Epstein, J.A., Kaartinen, V. Dev. Biol. (2005) [Pubmed]
  11. Genomic organization of a mouse type I activin receptor. Schmitt, J., Mielke, R., Schrewe, H. Biochem. Biophys. Res. Commun. (1995) [Pubmed]
  12. Genetically modified bone morphogenetic protein signalling alters traumatic brain injury-induced gene expression responses in the adult mouse. Israelsson, C., Lewén, A., Kylberg, A., Usoskin, D., Althini, S., Lindeberg, J., Deng, C.X., Fukuda, T., Wang, Y., Kaartinen, V., Mishina, Y., Hillered, L., Ebendal, T. J. Neurosci. Res. (2006) [Pubmed]
  13. Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. Aoki, H., Fujii, M., Imamura, T., Yagi, K., Takehara, K., Kato, M., Miyazono, K. J. Cell. Sci. (2001) [Pubmed]
  14. The type I serine/threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. Gu, Z., Reynolds, E.M., Song, J., Lei, H., Feijen, A., Yu, L., He, W., MacLaughlin, D.T., van den Eijnden-van Raaij, J., Donahoe, P.K., Li, E. Development (1999) [Pubmed]
  15. The novel type I serine-threonine kinase receptor Alk8 binds TGF-beta in the presence of TGF-betaRII. de Caestecker, M.P., Bottomley, M., Bhattacharyya, S., Payne, T.L., Roberts, A.B., Yelick, P.C. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  16. Correlation between ALK-6 (BMPR-IB) distribution and responsiveness to osteogenic protein-1 (BMP-7) in embryonic mouse bone rudiments. Haaijman, A., Burger, E.H., Goei, S.W., Nelles, L., ten Dijke, P., Huylebroeck, D., Bronckers, A.L. Growth Factors (2000) [Pubmed]
  17. Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Kaartinen, V., Dudas, M., Nagy, A., Sridurongrit, S., Lu, M.M., Epstein, J.A. Development (2004) [Pubmed]
  18. The ActR-I activin receptor protein is expressed in notochord, lens placode and pituitary primordium cells in the mouse embryo. Yoshikawa, S.I., Aota, S., Shirayoshi, Y., Okazaki, K. Mech. Dev. (2000) [Pubmed]
  19. Expression of type I and type IB receptors for activin in midgestation mouse embryos suggests distinct functions in organogenesis. Verschueren, K., Dewulf, N., Goumans, M.J., Lonnoy, O., Feijen, A., Grimsby, S., Vandi Spiegle, K., ten Dijke, P., Morén, A., Vanscheeuwijck, P. Mech. Dev. (1995) [Pubmed]
 
WikiGenes - Universities