The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

N-terminal domain of BARF1 gene encoded by Epstein-Barr virus is essential for malignant transformation of rodent fibroblasts and activation of BCL-2.

The BARF1 gene encoded by the Epstein-Barr virus induces morphological changes, loss of contact inhibition and anchorage independence in established rodent Balb/c3T3 fibroblast. BARF1 gene was also capable of inducing malignant transformation in a human Louckes B cell line. Our recent study showed that BARF1 gene had an ability to immortalize primary epithelial cells. However we do not know which region(s) of BARF1 protein is(are) responsible for inducing malignant transformation in established rodent cells. Using the deletion mutants, we now localized a malignant transforming region in N-terminal of BARF1 protein. The mutants lacking this region were unable to transform the cells in malignant state. Furthermore, we demonstrated that only the mutants containing this region rendered the cells resistant to apoptosis induced by serum deprivation. Surprisingly, the BARF1 gene was capable of activating anti-apoptotic Bcl-2 expression and this activation was due to the N-terminal transforming region. These data suggest that the cooperation of BARF1 with Bcl-2 is essential for the induction of malignant transformation.[1]

References

 
WikiGenes - Universities