Absence of hippocampal mossy fiber sprouting in transgenic mice overexpressing brain-derived neurotrophic factor.
Excess neuronal activity upregulates the expression of two neurotrophins, nerve growth factor (NGF) and brain-derived neurotrophic factor ( BDNF) in adult hippocampus. Nerve growth factor has been shown to contribute the induction of aberrant hippocampal mossy fiber sprouting in the inner molecular layer of the dentate gyrus, however the role of prolonged brain-derived neurotrophic factor exposure is uncertain. We examined the distribution and plasticity of mossy fibers in transgenic mice with developmental overexpression of brain-derived neurotrophic factor. Despite 2--3-fold elevated BDNF levels in the hippocampus sufficient to increase the intensity of neuropeptide Y immunoreactivity in interneurons, no visible changes in mossy fiber Timm staining patterns were observed in the inner molecular layer of adult mutant hippocampus compared to wild-type mice. In addition, no changes of the mRNA expression of two growth-associated proteins, GAP-43 and SCG-10 were found. These data suggest that early and persistent elevations of brain-derived neurotrophic factor in granule cells are not sufficient to elicit this pattern of axonal plasticity in the hippocampus.[1]References
- Absence of hippocampal mossy fiber sprouting in transgenic mice overexpressing brain-derived neurotrophic factor. Qiao, X., Suri, C., Knusel, B., Noebels, J.L. J. Neurosci. Res. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg