Pituitary adenylate cyclase-activating polypeptide and cyclic adenosine 3',5'-monophosphate stimulate the promoter activity of the rat gonadotropin-releasing hormone receptor gene via a bipartite response element in gonadotrope-derived cells.
Specific type I receptors for pituitary adenylate cyclase-activating polypeptide (PACAP) are present in gonadotrope cells of the anterior pituitary gland. By transient transfection of mouse gonadotrope-derived alphaT3-1 cells, which are direct targets for PACAP and express gonadotropin-releasing hormone receptor (GnRH-R), a marker of the gonadotrope lineage, we provide the first evidence that PACAP stimulates rat GnRH-R gene promoter activity. The EC(50) of this stimulation is compatible with a mediation via activation of the cyclic AMP-dependent signaling pathway and, consistently, co-transfection of an expression vector expressing the protein kinase A inhibitor causes reduction in PACAP as well as cholera toxin-stimulated promoter activity. Deletion and mutational analyses indicate that PACAP activation necessitates a bipartite response element that consists of a first region (-272/-237) termed PACAP response element (PARE) I that includes a steroidogenic factor-1 (SF-1)-binding site and a second region (-136/-101) referred to as PARE II that contains an imperfect cyclic AMP response element. Gel shift experiments indicate the specific binding of the SF-1 and a potential SF-1-interacting factor to PARE I while a protein immunologically related to the cyclic AMP response element-binding protein interacts with PARE II. These findings suggest that PACAP might regulate the GnRH-R gene at the transcriptional level, providing novel insights into the regulation of pituitary-specific genes by hypothalamic hypophysiotropic signals.[1]References
- Pituitary adenylate cyclase-activating polypeptide and cyclic adenosine 3',5'-monophosphate stimulate the promoter activity of the rat gonadotropin-releasing hormone receptor gene via a bipartite response element in gonadotrope-derived cells. Pincas, H., Laverrière, J.N., Counis, R. J. Biol. Chem. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg