The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Pituitary Gland, Anterior

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pituitary Gland, Anterior


High impact information on Pituitary Gland, Anterior


Chemical compound and disease context of Pituitary Gland, Anterior


Biological context of Pituitary Gland, Anterior


Anatomical context of Pituitary Gland, Anterior

  • Considerable differences were found for the abundance of proenkephalin A mRNA in the various tissues: from 0.023% in the adrenal medulla to 0.00002% in the adenohypophysis [21].
  • Diazoxide opens ATP-sensitive K+ channels in adenohypophysis cells as it does in pancreatic beta cells and also induces a hyperpolarization (approximately 30 mV) that is also suppressed by antidiabetic sulfonylureas [22].
  • Here, we review how the release of Ca(2+) from inositol trisphospate (IP(3))-sensitive stores contributes differently to the stimulus-secretion coupling in three types of secretory cells (acinar cells of the pancreas, gonadotrophs, and corticotrophs of the anterior pituitary gland) [23].
  • Here, in identifying the molecular nature of the pia mutation, we investigate the role of the zebrafish achaete-scute homologue ascl1a during development of the adenohypophysis, an endocrine derivative of the placodal ectoderm [24].
  • Using a series of gene-specific oligonucleotide probes, we have explored the developmental pattern of expression of six members of the rat kallikrein gene family (PS, S1, S2, S3, K1, and P1) in the submandibular gland (SMG) and kidney of both sexes, the prostate and testis of the male, and the anterior pituitary gland (AP) of the female rat [25].

Associations of Pituitary Gland, Anterior with chemical compounds


Gene context of Pituitary Gland, Anterior


Analytical, diagnostic and therapeutic context of Pituitary Gland, Anterior


  1. Pituitary tumors containing cholecystokinin. Rehfeld, J.F., Lindholm, J., Andersen, B.N., Bardram, L., Cantor, P., Fenger, M., Lüdecke, D.K. N. Engl. J. Med. (1987) [Pubmed]
  2. Arginine vasopressin as a thyrotropin-releasing hormone. Lumpkin, M.D., Samson, W.K., McCann, S.M. Science (1987) [Pubmed]
  3. Localization of the MEN1 gene to a small region within chromosome 11q13 by deletion mapping in tumors. Byström, C., Larsson, C., Blomberg, C., Sandelin, K., Falkmer, U., Skogseid, B., Oberg, K., Werner, S., Nordenskjöld, M. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  4. Vasoactive intestinal peptide in the human pituitary gland and adenomas. An immunocytochemical study. Hsu, D.W., Riskind, P.N., Hedley-Whyte, E.T. Am. J. Pathol. (1989) [Pubmed]
  5. Parathyroid hormone-like peptide in normal and neoplastic human endocrine tissues. Asa, S.L., Henderson, J., Goltzman, D., Drucker, D.J. J. Clin. Endocrinol. Metab. (1990) [Pubmed]
  6. Prolactin: structure, function, and regulation of secretion. Freeman, M.E., Kanyicska, B., Lerant, A., Nagy, G. Physiol. Rev. (2000) [Pubmed]
  7. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Ingraham, H.A., Chen, R.P., Mangalam, H.J., Elsholtz, H.P., Flynn, S.E., Lin, C.R., Simmons, D.M., Swanson, L., Rosenfeld, M.G. Cell (1988) [Pubmed]
  8. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Li, S., Crenshaw, E.B., Rawson, E.J., Simmons, D.M., Swanson, L.W., Rosenfeld, M.G. Nature (1990) [Pubmed]
  9. Characterization of rat hypothalamic growth hormone-releasing factor. Spiess, J., Rivier, J., Vale, W. Nature (1983) [Pubmed]
  10. Neurotensin in the rat anterior pituitary gland. Goedert, M., Lightman, S.L., Nagy, J.I., Marley, P.D., Emson, P.C. Nature (1982) [Pubmed]
  11. Thyroid hormone-mediated regulation of corticotropin-releasing hormone messenger ribonucleic acid in the rat. Shi, Z.X., Levy, A., Lightman, S.L. Endocrinology (1994) [Pubmed]
  12. Modulation of dopamine receptors by cations in 7315a, MtTW15 and estradiol-induced pituitary tumors. Coenen, K., Di Paolo, T. Biochem. Pharmacol. (1990) [Pubmed]
  13. Blood flow in diethylstilbestrol-induced anterior pituitary gland hyperplasia. Jakubowski, J., Kemeny, A.A., Stawowy, A., Smith, C., Timperley, W. Proc. Soc. Exp. Biol. Med. (1986) [Pubmed]
  14. Comparative effects of estrogens and prolactin on nigral and striatal GAD activity. Nicoletti, F., Patti, F., Ferrara, N., Canonico, P.L., Giammona, G., Condorelli, D.F., Scapagnini, U. Brain Res. (1982) [Pubmed]
  15. Hyperprolactinemia disrupts neuroendocrine responses of male rats to female conspecifics. Steger, R.W., Bartke, A., Bain, P.A., Chandrashekar, V. Neuroendocrinology (1987) [Pubmed]
  16. Identification of a thyroid hormone receptor that is pituitary-specific. Hodin, R.A., Lazar, M.A., Wintman, B.I., Darling, D.S., Koenig, R.J., Larsen, P.R., Moore, D.D., Chin, W.W. Science (1989) [Pubmed]
  17. A tissue-specific enhancer confers Pit-1-dependent morphogen inducibility and autoregulation on the pit-1 gene. Rhodes, S.J., Chen, R., DiMattia, G.E., Scully, K.M., Kalla, K.A., Lin, S.C., Yu, V.C., Rosenfeld, M.G. Genes Dev. (1993) [Pubmed]
  18. Action potentials occur in cells of the normal anterior pituitary gland and are stimulated by the hypophysiotropic peptide thyrotropin-releasing hormone. Taraskevich, P.S., Douglas, W.W. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  19. Posttranscriptional regulation of rat growth hormone gene expression: increased message stability and nuclear polyadenylation accompany thyroid hormone depletion. Murphy, D., Pardy, K., Seah, V., Carter, D. Mol. Cell. Biol. (1992) [Pubmed]
  20. The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Pagotto, U., Arzberger, T., Theodoropoulou, M., Grübler, Y., Pantaloni, C., Saeger, W., Losa, M., Journot, L., Stalla, G.K., Spengler, D. Cancer Res. (2000) [Pubmed]
  21. Quantitation of proenkephalin A messenger RNA in bovine brain, pituitary and adrenal medulla: correlation between mRNA and peptide levels. Pittius, C.W., Kley, N., Loeffler, J.P., Höllt, V. EMBO J. (1985) [Pubmed]
  22. ATP-modulated K+ channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release. Bernardi, H., De Weille, J.R., Epelbaum, J., Mourre, C., Amoroso, S., Slama, A., Fosset, M., Lazdunski, M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  23. Regulation of exocytosis via release of Ca(2+) from intracellular stores. Tse, F.W., Tse, A. Bioessays (1999) [Pubmed]
  24. The proneural gene ascl1a is required for endocrine differentiation and cell survival in the zebrafish adenohypophysis. Pogoda, H.M., von der Hardt, S., Herzog, W., Kramer, C., Schwarz, H., Hammerschmidt, M. Development (2006) [Pubmed]
  25. Tissue-specific developmental expression of the kallikrein gene family in the rat. Clements, J.A., Matheson, B.A., Funder, J.W. J. Biol. Chem. (1990) [Pubmed]
  26. Melatonin inhibition of the neonatal pituitary response to luteinizing hormone-releasing factor. Martin, J.E., Klein, D.C. Science (1976) [Pubmed]
  27. Localization, secretion, and action of inhibin in human placenta. Petraglia, F., Sawchenko, P., Lim, A.T., Rivier, J., Vale, W. Science (1987) [Pubmed]
  28. Comparative study of pituitary-thyroid hormone economy in fasting and hypothyroid rats. St Germain, D.L., Galton, V.A. J. Clin. Invest. (1985) [Pubmed]
  29. The effect of anandamide on prolactin secretion is modulated by estrogen. Scorticati, C., Mohn, C., De Laurentiis, A., Vissio, P., Fernández Solari, J., Seilicovich, A., McCann, S.M., Rettori, V. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  30. Adenosine acts by A1 receptors to stimulate release of prolactin from anterior-pituitaries in vitro. Yu, W.H., Kimura, M., Walczewska, A., Porter, J.C., McCann, S.M. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  31. Ontogeny of the prohormone convertases PC1 and PC2 in the mouse hypophysis and their colocalization with corticotropin and alpha-melanotropin. Marcinkiewicz, M., Day, R., Seidah, N.G., Chrétien, M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  32. Pituitary hypoplasia and respiratory distress syndrome in Prop1 knockout mice. Nasonkin, I.O., Ward, R.D., Raetzman, L.T., Seasholtz, A.F., Saunders, T.L., Gillespie, P.J., Camper, S.A. Hum. Mol. Genet. (2004) [Pubmed]
  33. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. De Moerlooze, L., Spencer-Dene, B., Revest, J., Hajihosseini, M., Rosewell, I., Dickson, C. Development (2000) [Pubmed]
  34. Growth hormone-releasing hormone receptor mRNA in acromegalic pituitary tumors. Lopes, M.B., Gaylinn, B.D., Thorner, M.O., Stoler, M.H. Am. J. Pathol. (1997) [Pubmed]
  35. Estrogen-induced decrease of glucocorticoid receptor messenger ribonucleic acid concentration in rat anterior pituitary gland. Peiffer, A., Barden, N. Mol. Endocrinol. (1987) [Pubmed]
  36. Intact leptin receptor is selectively expressed in human fetal pituitary and pituitary adenomas and signals human fetal pituitary growth hormone secretion. Shimon, I., Yan, X., Magoffin, D.A., Friedman, T.C., Melmed, S. J. Clin. Endocrinol. Metab. (1998) [Pubmed]
  37. Thyroid hormone and estrogen receptor expression in normal pituitary and nonfunctioning tumors of the anterior pituitary. Gittoes, N.J., McCabe, C.J., Verhaeg, J., Sheppard, M.C., Franklyn, J.A. J. Clin. Endocrinol. Metab. (1997) [Pubmed]
  38. Dopamine causes ultrastructural changes in prolactin cells of tilapia (Oreochromis niloticus). Hazineh, A., Shin, S.H., Reifel, C., Pang, S.C., Van der Kraak, G.J. Cell. Mol. Life Sci. (1997) [Pubmed]
WikiGenes - Universities