The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Receptor phosphorylation mediates estradiol reduction of alpha2-adrenoceptor coupling to G protein in the hypothalamus of female rats.

Estrogen increases evoked norepinephrine release in the hypothalamus of female rodents, in part by reducing the ability of alpha2-adrenoceptors to act as negative feed-back inhibitors of norepinephrine release. Estrogen enhancement of norepinephrine release in the hypothalamus correlates with decreased coupling of the alpha2-adrenoceptor to G protein. To determine the mechanism by which estrogen uncouples alpha2-adrenoceptors from G protein, we tested the hypothesis that estrogen increases alpha2-adrenoceptor phosphorylation. Short-term activation of endogenous serine/threonine phosphatases with protamine or treatment with exogenous phosphatase restored alpha2-adrenoceptor coupling to G protein to control levels in hypothalami from estrogen-exposed female rats. Additional experiments examined whether estrogen alters G protein-coupled receptor kinase expression or activity or serine/threonine phosphatase activity. These proteins are involved in G protein-coupled receptor phosphorylation, internalization, and recycling. Estrogen exposure reduced G protein-coupled receptor kinase mRNA, protein, and activity in the hypothalamus. Furthermore, estrogen treatment reduced serine/threonine phosphatase activity in the hypothalamus. Analysis of ligand binding in subcellular fractions demonstrated that estrogen decreases the fraction of internalized alpha2-adrenoceptors in the hypothalamus.Therefore, estrogen promotes norepinephrine release in the hypothalamus by stabilizing alpha2-adrenoceptor phosphorylation, uncoupling the receptor from G protein. Estrogen may stabilize alpha2-adrenoceptor phosphorylation by inhibiting receptor internalization and dephosphorylation.[1]

References

 
WikiGenes - Universities