Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions.
The yeast Saccharomyces cerevisiae possesses two methionyl-tRNA synthetases ( MetRS), one in the cytoplasm and the other in mitochondria. The cytoplasmic MetRS has a zinc-finger motif of the type Cys-X(2)-Cys-X(9)-Cys-X(2)-Cys in an insertion domain that divides the nucleotide-binding fold into two halves, whereas no such motif is present in the mitochondrial MetRS. Here, we show that tightly bound zinc atom is present in the cytoplasmic MetRS but not in the mitochondrial MetRS. To test whether the presence of a zinc-binding site is required for cytoplasmic functions of MetRS, we constructed a yeast strain in which cytoplasmic MetRS gene was inactivated and the mitochondrial MetRS gene was expressed in the cytoplasm. Provided that methionine-accepting tRNA is overexpressed, this strain was viable, indicating that mitochondrial MetRS was able to aminoacylate tRNA(Met) in the cytoplasm. Site-directed mutagenesis demonstrated that the zinc domain was required for the stability and consequently for the activity of cytoplasmic MetRS. Mitochondrial MetRS, like cytoplasmic MetRS, supported homocysteine editing in vivo in the yeast cytoplasm. Both MetRSs catalyzed homocysteine editing and aminoacylation of coenzyme A in vitro. Thus, identical synthetic and editing functions can be carried out in different structural frameworks of cytoplasmic and mitochondrial MetRSs.[1]References
- Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions. Senger, B., Despons, L., Walter, P., Jakubowski, H., Fasiolo, F. J. Mol. Biol. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









