Cellular resistance to Evans blue toxicity involves an up-regulation of a phosphate transporter implicated in vesicular glutamate storage.
It has recently been suggested that the brain-specific Na+-dependent phosphate inorganic co-transporter (BNPI) is able to support glutamate transport and storage in synaptic vesicles. A procedure for measuring the vesicular pool of glutamate is described and was used to select cell lines according to their glutamate storage capacity. Two cell lines were selected: C6BU-1, with a large intracellular glutamate storage capacity, and NG108-15, devoid of it. Their contents in BNPI mRNA were compared by RT-PCR. We found that both cell lines had BNPI, but in addition C6BU-1 alone expresses the other isoform, DNPI. We also carried out a clonal selection of NG108-15 cells in the presence of the dye Evans blue, a competitive inhibitor of vesicular glutamate transport, very toxic for cells in culture. It was assumed that only those that sequester and eliminate the drug by overexpressing a vesicular glutamate transporter would survive. We found that the NG108-15 clones resistant to Evans blue had an increased storage capacity for glutamate. These cells also up-regulated the BNPI isoform of the phosphate transporter as shown by RT-PCR and northern blot.[1]References
- Cellular resistance to Evans blue toxicity involves an up-regulation of a phosphate transporter implicated in vesicular glutamate storage. Israël, M., Tomasi, M., Bostel, S., Meunier, F.M. J. Neurochem. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg