The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis.

GSK3/shaggy-like protein kinases have been shown to play diverse roles in development and signal transduction pathways in various organisms. An Arabidopsis homologue of GSK3/shaggy-like kinase, AtGSK1, has been shown to be involved in NaCl stress responses. In order to further clarify the role of AtGSK1 in NaCl stress responses in plants, we generated transgenic Arabidopsis plants that over-expressed AtGSK1 mRNA. These plants showed enhanced resistance to NaCl stress when assayed either as whole plants or by measurement of root growth on NaCl plates. In addition, AtGSK1 transgenic plants in the absence of NaCl stress showed phenotypic changes, such as accumulation of anthocyanin, that were similar to those observed in wild-type plants under NaCl stress. Transgenic plants accumulated 30-50% more Na+ than did wild-type plants when subjected to NaCl stress, and Ca2+ content was increased by 15-30% in the transgenic plants regardless of the NaCl stress level. Northern blotting revealed that AtGSK1 over-expression induced expression of the NaCl stress-responsive genes AtCP1, RD29A and CHS1 in the absence of NaCl stress. In addition, AtCBL1 and AtCP1 were super-induced in the NaCl-stressed transgenic plants. Taken together, these results suggest that AtGSK1 is involved in the signal transduction pathway(s) of NaCl stress responses in Arabidopsis.[1]

References

 
WikiGenes - Universities