The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Plants, Genetically Modified

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Plants, Genetically Modified

 

High impact information on Plants, Genetically Modified

  • Furthermore, transformation of the cloned wild-type NPR1 gene into npr1 mutants not only complemented the mutations, restoring the responsiveness to SAR induction with respect to PR-gene expression and resistance to infections, but also rendered the transgenic plants more resistant to infection by P. syringae in the absence of SAR induction [6].
  • The identification of RPS2 was verified using a newly developed transient assay for RPS2 function and by genetic complementation in transgenic plants [7].
  • Introduction of functional FRO2 complements the frd1-1 phenotype in transgenic plants [8].
  • Here we show that transgenic plants which constitutively express the AP1 gene show transformations of apical and lateral shoots into flowers, and that these plants flower much earlier than wild-type plants [9].
  • We further show that expression of the transgene encoding S3 protein in P. inflata plants of S1S2 genotype confers on the transgenic plants the ability to reject S3 pollen [10].
 

Chemical compound and disease context of Plants, Genetically Modified

 

Biological context of Plants, Genetically Modified

  • Constitutive expression of CycD3 in transgenic plants allowed induction and maintenance of cell division in the absence of exogenous cytokinin [16].
  • Histochemical analysis of transgenic plants harboring a HAESA promoter:: beta-glucuronidase reporter gene and in situ RNA hybridization experiments show HAESA expression in the abscission zones where the sepals, petals, and stamens attach to the receptacle, at the base of pedicels, and at the base of petioles where leaves attach to the stem [17].
  • These approaches are highly efficient in removing TNT, and increasing amounts of research into the potential usefulness of phytoremediation, rhizophytoremediation, and transgenic plants with bacterial genes for TNT removal are being done [18].
  • Moreover, the endogenous ADL1 protein level was greatly reduced in these transgenic plants, probably due to a post-transcriptional silencing effect of the transgenes [19].
  • Gene fusions to lacZ reveal new expression patterns of chimeric genes in transgenic plants [20].
 

Anatomical context of Plants, Genetically Modified

 

Associations of Plants, Genetically Modified with chemical compounds

  • Aluminum tolerance in transgenic plants by alteration of citrate synthesis [26].
  • Movement of fluorescein isothiocyanate-labeled dextran (F-dextran) with an average molecular mass of 9400 daltons and an approximate Stokes radius of 2.4 nanometers was detected between cells of the transgenic plants, whereas the size exclusion limit for the control plants was 700 to 800 daltons [27].
  • Two different afp mutant alleles (afp-1 and afp-2) are hypersensitive to ABA, whereas transgenic plants overexpressing AFP are resistant; in these plants, AFP and ABI5 protein levels are inversely correlated [28].
  • To identify the RNA segment required for psbL editing, chimeric kanamycin resistance genes were constructed containing psbL deletion derivatives, and tested in vivo for editing in transgenic plants [29].
  • Transgenic plants with a reduced amount of sucrose carrier mRNA show a dramatic reduction in root development and tuber yield [30].
 

Gene context of Plants, Genetically Modified

  • Moreover, induced expression of wild-type COP1 in transgenic plants accelerates post-translational degradation of HFR1 under FR light [31].
  • Transgenic plants expressing sense or antisense NAC1 cDNA show an increase or reduction of lateral roots, respectively [32].
  • ICE1 is expressed constitutively, and its overexpression in wild-type plants enhances the expression of the CBF regulon in the cold and improves freezing tolerance of the transgenic plants [33].
  • Analyses of transgenic plants and genome-wide transcript profiling indicated that MKS1 is required for full SA-dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild-type plants is sufficient to activate SA-dependent resistance, but does not interfere with induction of a defense gene by JA [34].
  • In addition, transgenic plants containing a luciferase gene controlled by the ATHB6 promoter documented a strong ABA-inducible expression of the reporter which was abrogated in the ABA-insensitive abi1 mutant [35].
 

Analytical, diagnostic and therapeutic context of Plants, Genetically Modified

References

  1. Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. Beffa, R., Szell, M., Meuwly, P., Pay, A., Vögeli-Lange, R., Métraux, J.P., Neuhaus, G., Meins, F., Nagy, F. EMBO J. (1995) [Pubmed]
  2. Analysis of regulatory elements involved in the induction of two tobacco genes by salicylate treatment and virus infection. Van de Rhee, M.D., Van Kan, J.A., González-Jaén, M.T., Bol, J.F. Plant Cell (1990) [Pubmed]
  3. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Xiong, L., Yang, Y. Plant Cell (2003) [Pubmed]
  4. Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in S-adenosylmethionine-dependent transmethylation reactions. Masuta, C., Tanaka, H., Uehara, K., Kuwata, S., Koiwai, A., Noma, M. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  5. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Sanders, P.R., Winter, J.A., Barnason, A.R., Rogers, S.G., Fraley, R.T. Nucleic Acids Res. (1987) [Pubmed]
  6. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., Dong, X. Cell (1997) [Pubmed]
  7. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Mindrinos, M., Katagiri, F., Yu, G.L., Ausubel, F.M. Cell (1994) [Pubmed]
  8. A ferric-chelate reductase for iron uptake from soils. Robinson, N.J., Procter, C.M., Connolly, E.L., Guerinot, M.L. Nature (1999) [Pubmed]
  9. A gene triggering flower formation in Arabidopsis. Mandel, M.A., Yanofsky, M.F. Nature (1995) [Pubmed]
  10. S proteins control rejection of incompatible pollen in Petunia inflata. Lee, H.S., Huang, S., Kao, T. Nature (1994) [Pubmed]
  11. Stability and expression of bacterial genes in replicating geminivirus vectors in plants. Hayes, R.J., Coutts, R.H., Buck, K.W. Nucleic Acids Res. (1989) [Pubmed]
  12. Alteration of anion channel kinetics in wild-type and abi1-1 transgenic Nicotiana benthamiana guard cells by abscisic acid. Grabov, A., Leung, J., Giraudat, J., Blatt, M.R. Plant J. (1997) [Pubmed]
  13. Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants. Holmström, K.O., Welin, B., Mandal, A., Kristiansdottir, I., Teeri, T.H., Lamark, T., Strøm, A.R., Palva, E.T. Plant J. (1994) [Pubmed]
  14. Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crtl in transgenic plants showing an increase of beta-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon. Misawa, N., Yamano, S., Linden, H., de Felipe, M.R., Lucas, M., Ikenaga, H., Sandmann, G. Plant J. (1993) [Pubmed]
  15. A lithium-sensitive and sodium-tolerant 3'-phosphoadenosine-5'-phosphatase encoded by halA from the cyanobacterium Arthrospira platensis is closely related to its counterparts from yeasts and plants. Zhang, J.Y., Zou, J., Bao, Q., Chen, W.L., Wang, L., Yang, H., Zhang, C.C. Appl. Environ. Microbiol. (2006) [Pubmed]
  16. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Riou-Khamlichi, C., Huntley, R., Jacqmard, A., Murray, J.A. Science (1999) [Pubmed]
  17. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Jinn, T.L., Stone, J.M., Walker, J.C. Genes Dev. (2000) [Pubmed]
  18. Biological degradation of 2,4,6-trinitrotoluene. Esteve-Núñez, A., Caballero, A., Ramos, J.L. Microbiol. Mol. Biol. Rev. (2001) [Pubmed]
  19. A dynamin-like protein in Arabidopsis thaliana is involved in biogenesis of thylakoid membranes. Park, J.M., Cho, J.H., Kang, S.G., Jang, H.J., Pih, K.T., Piao, H.L., Cho, M.J., Hwang, I. EMBO J. (1998) [Pubmed]
  20. Gene fusions to lacZ reveal new expression patterns of chimeric genes in transgenic plants. Teeri, T.H., Lehväslaiho, H., Franck, M., Uotila, J., Heino, P., Palva, E.T., Van Montagu, M., Herrera-Estrella, L. EMBO J. (1989) [Pubmed]
  21. Metabolic engineering of astaxanthin production in tobacco flowers. Mann, V., Harker, M., Pecker, I., Hirschberg, J. Nat. Biotechnol. (2000) [Pubmed]
  22. Immunocytological localization of an epitope-tagged plasma membrane proton pump (H(+)-ATPase) in phloem companion cells. DeWitt, N.D., Sussman, M.R. Plant Cell (1995) [Pubmed]
  23. Complementation of tobacco etch potyvirus mutants by active RNA polymerase expressed in transgenic cells. Li, X.H., Carrington, J.C. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  24. Activation and function of mitochondrial uncoupling protein in plants. Smith, A.M., Ratcliffe, R.G., Sweetlove, L.J. J. Biol. Chem. (2004) [Pubmed]
  25. Tobacco transgenic lines that express fenugreek galactomannan galactosyltransferase constitutively have structurally altered galactomannans in their seed endosperm cell walls. Reid, J.S., Edwards, M.E., Dickson, C.A., Scott, C., Gidley, M.J. Plant Physiol. (2003) [Pubmed]
  26. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. de la Fuente, J.M., Ramírez-Rodríguez, V., Cabrera-Ponce, J.L., Herrera-Estrella, L. Science (1997) [Pubmed]
  27. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Wolf, S., Deom, C.M., Beachy, R.N., Lucas, W.J. Science (1989) [Pubmed]
  28. AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Lopez-Molina, L., Mongrand, S., Kinoshita, N., Chua, N.H. Genes Dev. (2003) [Pubmed]
  29. Sequences directing C to U editing of the plastid psbL mRNA are located within a 22 nucleotide segment spanning the editing site. Chaudhuri, S., Maliga, P. EMBO J. (1996) [Pubmed]
  30. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. Riesmeier, J.W., Willmitzer, L., Frommer, W.B. EMBO J. (1994) [Pubmed]
  31. HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Jang, I.C., Yang, J.Y., Seo, H.S., Chua, N.H. Genes Dev. (2005) [Pubmed]
  32. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Xie, Q., Frugis, G., Colgan, D., Chua, N.H. Genes Dev. (2000) [Pubmed]
  33. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., Zhu, J.K. Genes Dev. (2003) [Pubmed]
  34. The MAP kinase substrate MKS1 is a regulator of plant defense responses. Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N.H., Zhu, S., Qiu, J.L., Micheelsen, P., Rocher, A., Petersen, M., Newman, M.A., Bjørn Nielsen, H., Hirt, H., Somssich, I., Mattsson, O., Mundy, J. EMBO J. (2005) [Pubmed]
  35. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. Himmelbach, A., Hoffmann, T., Leube, M., Höhener, B., Grill, E. EMBO J. (2002) [Pubmed]
  36. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. Plant Cell (2003) [Pubmed]
  37. Integration and expression of a rabbit liver cytochrome P-450 gene in transgenic Nicotiana tabacum. Saito, K., Noji, M., Ohmori, S., Imai, Y., Murakoshi, I. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  38. The Arabidopsis ERECTA gene is expressed in the shoot apical meristem and organ primordia. Yokoyama, R., Takahashi, T., Kato, A., Torii, K.U., Komeda, Y. Plant J. (1998) [Pubmed]
  39. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Ge, L., Chen, H., Jiang, J.F., Zhao, Y., Xu, M.L., Xu, Y.Y., Tan, K.H., Xu, Z.H., Chong, K. Plant Physiol. (2004) [Pubmed]
  40. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., Yamaguchi-Shinozaki, K. Plant J. (2004) [Pubmed]
 
WikiGenes - Universities