The reaction of yeast cystathionine beta-synthase is rate-limited by the conversion of aminoacrylate to cystathionine.
Our studies of the reaction mechanism of cystathionine beta-synthase from Saccharomyces cerevisiae (yeast) are facilitated by the spectroscopic properties of the pyridoxal phosphate coenzyme that forms a series of intermediates in the reaction of L-serine and L-homocysteine to form L-cystathionine. To characterize these reaction intermediates, we have carried out rapid-scanning stopped-flow and single-wavelength stopped-flow kinetic measurements under pre-steady-state conditions, as well as circular dichroism and fluorescence spectroscopy under steady-state conditions. We find that the gem-diamine and external aldimine of aminoacrylate are the primary intermediates in the forward half-reaction with L-serine and that the external aldimine of aminoacrylate or its complex with L-homocysteine is the primary intermediate in the reverse half-reaction with L-cystathionine. The second forward half-reaction of aminoacrylate with L-homocysteine is rapid. No primary kinetic isotope effect was obtained in the forward half-reaction with L-serine. The results provide evidence (1) that the formation of the external aldimine of L-serine is faster than the formation of the aminoacrylate intermediate, (2) that aminoacrylate is formed by the concerted removal of the alpha-proton and the hydroxyl group of L-serine, and (3) that the rate of the overall reaction is rate-limited by the conversion of aminoacrylate to L-cystathionine. We compare our results with cystathionine beta-synthase with those of related investigations of tryptophan synthase and O-acetylserine sulfhydrylase.[1]References
- The reaction of yeast cystathionine beta-synthase is rate-limited by the conversion of aminoacrylate to cystathionine. Jhee, K.H., Niks, D., McPhie, P., Dunn, M.F., Miles, E.W. Biochemistry (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg