The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A novel transrepression pathway of c-Myc. Recruitment of a transcriptional corepressor complex to c-Myc by MM-1, a c-Myc-binding protein.

The protooncogene product c-Myc plays a role in transcription regulation both for activation and repression. While transactivation pathways of c-Myc either from the N-proximal or the C-proximal region that is linked to the chromatin remodeling complex have been identified, a transrepression pathway had been identified only from the C-proximal region via Max and Mad that recruit the histone deacetylase ( HDAC) complex. We have reported that a novel c-Myc-binding protein, MM-1, repressed the E-box-dependent transcription activity of c-Myc (Mori, K., Maeda, Y., Kitaura, H., Taira, T., Iguchi-Ariga, S. M. M., and Ariga, H. (1998) J. Biol. Chem. 273, 29794-29800). To clarify the molecular mechanisms of MM-1 toward c-Myc, cDNAs encoding MM-1-binding proteins were screened by the two-hybrid method with MM-1 as a bait using a human HeLa cDNA library, and a cDNA encoding TIF1 beta/ KAP1, a transcriptional corepressor, was obtained. MM-1 was found to bind to the central portion of TIF1 beta in vitro and in vivo, and these proteins were found to be colocalized in the nucleus. MM-1 and TIF1 beta complex in human HeLa cells was found to also contain c-Myc, mSin3, and HDAC1. Introduction of the C-terminal half of TIF1 beta as a dominant negative form abrogated the inhibitory activity of MM-1 toward c-Myc and greatly stimulated the transcription activity of c-Myc. Moreover, the inhibitory activity of MM-1 toward c-Myc was canceled by trichostatin A, an inhibitor of HDAC1. These results indicate that MM-1 is a connecting factor that forms a novel transcription repression pathway of c-Myc.[1]

References

 
WikiGenes - Universities