The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

PFDN5  -  prefoldin subunit 5

Homo sapiens

Synonyms: C-Myc-binding protein Mm-1, MM-1, MM1, Myc modulator 1, PFD5, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of PFDN5


Psychiatry related information on PFDN5


High impact information on PFDN5


Biological context of PFDN5


Anatomical context of PFDN5

  • The MM-1 mRNA was highly expressed in human pancreas and skeletal muscle and moderately in other tissues [8].
  • The mammalian two-hybrid assays in hamster CHO cells revealed that MM-1 interacts in vivo with the N-terminal domain covering the myc box 2, a transcription-activating domain, of c-Myc [8].
  • Compounds were further examined on other tumor cell lines such as Jurkat, H1299, and MM1, respectively [11].
  • A clone named MM1 was isolated from a library of monoclonal antibodies to adult porcine aorta, which in vivo binds to arterial but not venous SM cells, except for the pulmonary vein [12].

Associations of PFDN5 with chemical compounds

  • In an EST data base search for cDNAs homologous to MM-1, we found a frequent substitution of amino acid 157 of MM-1, from alanine to arginine (A157R), and the substitution was observed more in tumor cells than in normal cells [1].
  • Herein we made stable transfectants of MM1 expressing active and Botulinum exoenzyme C3 (C3)-sensitive (Val14), or active and C3-insensitive (Val14/Ile41) forms of human RhoA [10].
  • The theoretical docking studies showed that MM1 acts on the same site of the receptor as losartan [13].

Physical interactions of PFDN5

  • These results indicate that MM-1 is a connecting factor that forms a novel transcription repression pathway of c-Myc [7].

Regulatory relationships of PFDN5

  • Furthermore, MM-1 repressed the activation of E-box-dependent transcription by c-Myc [8].

Other interactions of PFDN5

  • PTPN18, ABI3BP, and PFDN5 revealed a statistically significant differential splicing profile [14].
  • The N-terminal half (Myc1-88) is unfolded and does not alone bind to target proteins, whereas the C-terminal half (Myc92-167) has a partly helical fold and specifically binds both MM-1 and TBP [15].

Analytical, diagnostic and therapeutic context of PFDN5

  • In addition, real-time PCR analysis revealed that expression of an alternative PFDN5 variant was higher in malignant lesions than in benign lesions or normal tissues [14].
  • However, immunoprecipitation experiments revealed that MM1 bound to a 100-kDa polypeptide that was present only in the arterial SM extract [12].
  • A typical EEG was most often seen in MM1 patients and was significantly less likely in the MV1, MV2 and VV2 sub-types, whereas VV2 patients had an increased likelihood of a typical brain MRI [16].


  1. MM-1, a c-Myc-binding protein, is a candidate for a tumor suppressor in leukemia/lymphoma and tongue cancer. Fujioka, Y., Taira, T., Maeda, Y., Tanaka, S., Nishihara, H., Iguchi-Ariga, S.M., Nagashima, K., Ariga, H. J. Biol. Chem. (2001) [Pubmed]
  2. Lysogeny of Streptococcus pneumoniae with MM1 phage: improved adherence and other phenotypic changes. Loeffler, J.M., Fischetti, V.A. Infect. Immun. (2006) [Pubmed]
  3. The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Ying, H., Biroc, S.L., Li, W.W., Alicke, B., Xuan, J.A., Pagila, R., Ohashi, Y., Okada, T., Kamata, Y., Dinter, H. Mol. Cancer Ther. (2006) [Pubmed]
  4. Inhibition of transcellular tumor cell migration and metastasis by novel carba-derivatives of cyclic phosphatidic acid. Uchiyama, A., Mukai, M., Fujiwara, Y., Kobayashi, S., Kawai, N., Murofushi, H., Inoue, M., Enoki, S., Tanaka, Y., Niki, T., Kobayashi, T., Tigyi, G., Murakami-Murofushi, K. Biochim. Biophys. Acta (2007) [Pubmed]
  5. Clusterin solubility and aggregation in Creutzfeldt-Jakob disease. Freixes, M., Puig, B., Rodríguez, A., Torrejón-Escribano, B., Blanco, R., Ferrer, I. Acta Neuropathol. (2004) [Pubmed]
  6. Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function. Watanabe, K., Ozaki, T., Nakagawa, T., Miyazaki, K., Takahashi, M., Hosoda, M., Hayashi, S., Todo, S., Nakagawara, A. J. Biol. Chem. (2002) [Pubmed]
  7. A novel transrepression pathway of c-Myc. Recruitment of a transcriptional corepressor complex to c-Myc by MM-1, a c-Myc-binding protein. Satou, A., Taira, T., Iguchi-Ariga, S.M., Ariga, H. J. Biol. Chem. (2001) [Pubmed]
  8. MM-1, a novel c-Myc-associating protein that represses transcriptional activity of c-Myc. Mori, K., Maeda, Y., Kitaura, H., Taira, T., Iguchi-Ariga, S.M., Ariga, H. J. Biol. Chem. (1998) [Pubmed]
  9. B-myc: N-terminal recognition of myc binding proteins. Burton, R.A., Mattila, S., Taparowsky, E.J., Post, C.B. Biochemistry (2006) [Pubmed]
  10. Small GTP-binding protein Rho stimulates the actomyosin system, leading to invasion of tumor cells. Yoshioka, K., Matsumura, F., Akedo, H., Itoh, K. J. Biol. Chem. (1998) [Pubmed]
  11. Novel curcumin analogs targeting TNF-induced NF-kappaB activation and proliferation in human leukemic KBM-5 cells. Zambre, A.P., Kulkarni, V.M., Padhye, S., Sandur, S.K., Aggarwal, B.B. Bioorg. Med. Chem. (2006) [Pubmed]
  12. Differential availability/processing of decorin precursor in arterial and venous smooth muscle cells. Franch, R., Chiavegato, A., Maraschin, M., Candeo, S., Ausoni, S., Villa, A., Gerosa, G., Gasparotto, L., Parnigotto, P., Sartore, S. J. Anat. (2006) [Pubmed]
  13. Synthesis, binding studies and in vivo biological evaluation of novel non-peptide antihypertensive analogues. Mavromoustakos, T., Moutevelis-Minakakis, P., Kokotos, C.G., Kontogianni, P., Politi, A., Zoumpoulakis, P., Findlay, J., Cox, A., Balmforth, A., Zoga, A., Iliodromitis, E. Bioorg. Med. Chem. (2006) [Pubmed]
  14. Identification of candidates for tumor-specific alternative splicing in the thyroid. Guimarães, G.S., Latini, F.R., Camacho, C.P., Maciel, R.M., Dias-Neto, E., Cerutti, J.M. Genes Chromosomes Cancer (2006) [Pubmed]
  15. N and C-terminal sub-regions in the c-Myc transactivation region and their joint role in creating versatility in folding and binding. Fladvad, M., Zhou, K., Moshref, A., Pursglove, S., Säfsten, P., Sunnerhagen, M. J. Mol. Biol. (2005) [Pubmed]
  16. Determinants of diagnostic investigation sensitivities across the clinical spectrum of sporadic Creutzfeldt-Jakob disease. Collins, S.J., Sanchez-Juan, P., Masters, C.L., Klug, G.M., van Duijn, C., Poleggi, A., Pocchiari, M., Almonti, S., Cuadrado-Corrales, N., de Pedro-Cuesta, J., Budka, H., Gelpi, E., Glatzel, M., Tolnay, M., Hewer, E., Zerr, I., Heinemann, U., Kretszchmar, H.A., Jansen, G.H., Olsen, E., Mitrova, E., Alpérovitch, A., Brandel, J.P., Mackenzie, J., Murray, K., Will, R.G. Brain (2006) [Pubmed]
WikiGenes - Universities