The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Altered IMPA2 gene expression and calcium homeostasis in bipolar disorder.

Reduced inositol monophosphatase (IMPase) activity and elevated basal intracellular calcium levels ([Ca(2+)](B)) have been reported in B lymphoblast cell lines (BLCLs) from bipolar I affective disorder (BD-I) patients, which may reflect cellular endophenotypes of this disorder. As the PI cycle couples to intracellular Ca(2+) mobilization, these two putative endophenotypes may be related. Using an RT-PCR assay, mRNA levels were estimated for IMPA1 and 2 genes encoding human IMPase 1 and 2, respectively, in BLCLs phenotyped on [Ca(2+)](B), from patients with a DSM-IV diagnosis of BD-I (n = 12 per phenotype) and from age- and sex-matched healthy subjects (n = 12). IMPA2 mRNA levels were significantly lower in BLCLs from male BD-I patients with high [Ca(2+)](B) (n = 6) compared with healthy male subjects (n = 5) (-52%, P = 0.013), male BD-I patients with normal BLCL [Ca(2+)](B) (n = 8) (-42%, P = 0.003) and female BD-I patients with high [Ca(2+)](B) (n = 6) (-59%, P = 0.0004). A significant negative correlation was observed between IMPA2 mRNA levels and [Ca(2+)](B) in BLCLs from male (P = 0.046), but not female BD-I patients. Sex-dependent differences were also evident in postmortem temporal cortex IMPA2 mRNA levels which, in contrast to BLCLs, were significantly higher in male BD-I subjects compared with male controls (P = 0.025, n = 4/group). Collectively, these observations suggest a potential sex-dependent link between abnormalities in IMPA2 expression and calcium homeostasis in the pathophysiology of BD.[1]

References

  1. Altered IMPA2 gene expression and calcium homeostasis in bipolar disorder. Yoon, I.S., Li, P.P., Siu, K.P., Kennedy, J.L., Cooke, R.G., Parikh, S.V., Warsh, J.J. Mol. Psychiatry (2001) [Pubmed]
 
WikiGenes - Universities