Hemolysis and iodination of erythrocyte components by a myeloperoxidase-mediated system.
Erythrocytes are hemolyzed by myeloperoxidase, an H2O2-generating system (glucose + glucose oxidase; hypoxanthine + xanthine oxidase) and an oxidizable cofactor (chloride, iodide, thyroxine, triiodothyronine). The combined effect of chloride and either iodide or the thyroid hormones is greater than additive. Myeloperoxidase can be replaced by lactoperoxidase in the iodide-, thyroxine and triiodothyronine-dependent, but not in the chloride-dependent, systems. Hemolysis is is inhibited by the peroxidase inhibitors, azide and cyanide, and by catalase and is stimulated by superoxide dismutase when the xanthine oxidase system is employed as the source of H2O2. Hemolysis by the iodide-dependent system is associated with the iodination of erythrocyte components.[1]References
- Hemolysis and iodination of erythrocyte components by a myeloperoxidase-mediated system. Klebanoff, S.J., Clark, R.A. Blood (1975) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg