The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

DNA sequence recognition in the minor groove by crosslinked polyamides: The effect of N-terminal head group and linker length on binding affinity and specificity.

Development of sequence-reading polyamides or "lexitropsins" with comparable DNA-binding affinities to cellular proteins raises the possibility of artificially regulated gene expression. Covalent linkage of polyamide ligands, with either a hairpin motif or crosslinking methylene bridge, has greatly improved binding affinity by ensuring their side-by-side register. Whereas hairpin polyamides have been investigated extensively, the optimized structure of crosslinked polyamides remains to be determined. This study examines a series of thiazole-imidazole-pyrrole (TIP) monomers and crosslinked dimers to evaluate the effects on selectivity and binding affinity of different N-terminal head groups attached to the leading thiazole ring and differing methylene linker lengths. Quantitative footprinting of a DNA sequence, containing potential match and mismatch sites for both maximum overlap and one-residue stagger binding modes, allowed measurement of binding constants at each putative site. Within an N-terminal amino TIP series, C7 and C8-linked compounds bound most strongly to these sites, whereas maximum binding affinity was observed for a C6 linker with a formyl head group. A C5 linker gave weak binding with either head group. A hydrogen or acetyl head group abrogated binding. Binding was confirmed by gel shift analyses. The highest specificity for the maximum overlap site over the one-residue stagger was observed with TIP-C7-amino. Selectivity of the leading thiazole was modulated by the head group, with N-terminal formyl TIP exhibiting up to 3-fold specificity for AGT over TGT, suggesting that N-formyl-thiazole may provide sequence discrimination of adenine over thymine. Moreover, the leading head group and methylene linker length significantly influences the binding characteristics of crosslinked polyamides.[1]

References

  1. DNA sequence recognition in the minor groove by crosslinked polyamides: The effect of N-terminal head group and linker length on binding affinity and specificity. O'Hare, C.C., Mack, D., Tandon, M., Sharma, S.K., Lown, J.W., Kopka, M.L., Dickerson, R.E., Hartley, J.A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
 
WikiGenes - Universities