The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Isothiazole     1,2-thiazole

Synonyms: SureCN5679, SureCN393953, AG-E-93117, CHEMBL2171712, CHEBI:35600, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of thiazole


High impact information on thiazole


Chemical compound and disease context of thiazole


Biological context of thiazole

  • The latter conclusion is based on an analysis of the mobilities of the multiple HSFDT-DNA complexes and on a two-color mobility-shift fluorescence assay that uses a mutant of HSFDT engineered for site-specific labeling with fluorescein and target DNA labeled with an "energy transfer" dye, thiazole orange-thiazole blue heterodimer [16].
  • Asymmetric hydrogenation of trisubstituted olefins with iridium-phosphine thiazole complexes: a further investigation of the ligand structure [17].
  • BACKGROUND: The Escherichia coli peptide antibiotic microcin B17 (MccB17) contains thiazole and oxazole heterocycles derived from a distributive yet directional cyclization of cysteines and serines in the McbA precursor catalyzed by MccB17 synthetase [18].
  • With the use of a high-throughput biochemical DNA helicase assay as a screen, T157602, a 2-amino thiazole compound, was identified as a specific inhibitor of herpes simplex virus (HSV) DNA replication [4].
  • Novel thiazole derivatives as inhibitors of superoxide production by human neutrophils: synthesis and structure-activity relationships [19].

Anatomical context of thiazole

  • Structural basis for contrasting activities of ribosome binding thiazole antibiotics [20].
  • The Vmax for the hydrolysis of CEO by hepatic microsomes from thiazole-treated rats (13.4 nmol/min/mg protein) was 1.5-fold greater than that with microsomes from pyrazine-treated rats, whereas similar Km values (approximately 1 mM) were observed for both microsomal preparations [21].
  • Medial smooth muscle cell proliferation in the balloon injured rabbit aorta: effect of a thiazole compound with platelet inhibitory activity [22].
  • The biological activity of each enantiomer was evaluated in intact mouse macrophages and in human whole blood and showed that, of these three series, only the thiazole is enantioselective and that the active configuration is (S) (being between 2 and 3 orders of magnitude more potent than the (R) isomer in mouse macrophages) [23].
  • Analogues with higher cytotoxicity such as 2 which retain the thiazole ring of the natural product proved effective in completely inhibiting the cell proliferation of breast, colon, and lung tumor cell lines at 1.5 microM concentration compared to a 70 microM dose level of 5-fluorouracil [24].

Associations of thiazole with other chemical compounds


Gene context of thiazole

  • N.crassa CyPBP37 is able to functionally replace Thi4p in yeast thiazole synthesis [30].
  • A cDNA clone, pAgthi1, encoding a homologue of yeast Thi4, which is involved in thiazole biosynthesis, was isolated from a library made from poly(A) RNA from actinorhizal nodules of Alnus glutinosa by differential screening with nodule and root cDNA, respectively [31].
  • Significant antimicrobial activity against key organisms such as MRSA and Candida albicans is shown by several compounds, especially those containing a thiazole [32].
  • Novel thiazole based heterocycles as inhibitors of LFA-1/ICAM-1 mediated cell adhesion [33].
  • SK&F 86002 [5-(4-pyridyl)-6(4-fluorophenyl)-2,3-dihydroimidazo(2,1-b) thiazole], a potent cytokine-suppressive anti-inflammatory agent, has been shown to inhibit cyclooxygenase (CO) and 5-lipoxygenase (LO) activity and to inhibit the production of cytokines both in vitro and in vivo [34].

Analytical, diagnostic and therapeutic context of thiazole

  • The molecular structure of PatJ(1), determined by X-ray crystallography, has a saddle conformation with two close-to-coparallel thiazole rings, very similar to the geometry of patellamide D [35].
  • The thiazole derivative inhibited platelet aggregation following oral administrative inhibited platelet aggregation following oral administration in five laboratory species [12].
  • Using a PCR approach to clone a thiazole-forming nonribosomal peptide synthetase (NRPS) as a probe, we localized a 172-kb DNA region from S. atroolivaceus S-140 that harbors the lnm biosynthetic gene cluster [36].
  • Separate condensation of other chiral (8 and 13) and racemic (18) amino thiols as auxiliary with rac-4, (4S)-4, or (4R)-4 is accompanied by an in situ crystallization-induced dynamic resolution, whereby one distereomer of thiazole template selectively precipitates and can be isolated by simple filtration in 76-82% yield with dr > 99 [37].
  • Pairing LDS-751, thiazole blue, or TO-PRO-3 with propidium iodide (PI) for flow cytometry allowed the differentiation of cells containing BrdUrd from BrdUrd unlabeled cells [38].


  1. Crystal structure of the free radical intermediate of pyruvate:ferredoxin oxidoreductase. Chabrière, E., Vernède, X., Guigliarelli, B., Charon, M.H., Hatchikian, E.C., Fontecilla-Camps, J.C. Science (2001) [Pubmed]
  2. Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: identification of an acyldisulfide-linked protein--protein conjugate that is functionally analogous to the ubiquitin/E1 complex. Xi, J., Ge, Y., Kinsland, C., McLafferty, F.W., Begley, T.P. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  3. Structural biology of enzymes of the thiamin biosynthesis pathway. Settembre, E., Begley, T.P., Ealick, S.E. Curr. Opin. Struct. Biol. (2003) [Pubmed]
  4. Inhibition of herpes simplex virus replication by a 2-amino thiazole via interactions with the helicase component of the UL5-UL8-UL52 complex. Spector, F.C., Liang, L., Giordano, H., Sivaraja, M., Peterson, M.G. J. Virol. (1998) [Pubmed]
  5. Effect of structural change on acute toxicity and antiinflammatory activity in a series of imidazothiazoles and thiazolobenzimidazoles. Powers, L.J., Fogt, S.W., Ariyan, Z.S., Rippin, D.J., Heilman, R.D., Matthews, R.J. J. Med. Chem. (1981) [Pubmed]
  6. A randomized, placebo-controlled, phase II study of tetomilast in active ulcerative colitis. Schreiber, S., Keshavarzian, A., Isaacs, K.L., Schollenberger, J., Guzman, J.P., Orlandi, C., Hanauer, S.B. Gastroenterology (2007) [Pubmed]
  7. Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Yorgey, P., Lee, J., Kördel, J., Vivas, E., Warner, P., Jebaratnam, D., Kolter, R. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  8. Pharmacological characterization of CP-547,632, a novel vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for cancer therapy. Beebe, J.S., Jani, J.P., Knauth, E., Goodwin, P., Higdon, C., Rossi, A.M., Emerson, E., Finkelstein, M., Floyd, E., Harriman, S., Atherton, J., Hillerman, S., Soderstrom, C., Kou, K., Gant, T., Noe, M.C., Foster, B., Rastinejad, F., Marx, M.A., Schaeffer, T., Whalen, P.M., Roberts, W.G. Cancer Res. (2003) [Pubmed]
  9. Structure of the Thiazole Biosynthetic Enzyme THI1 from Arabidopsis thaliana. Godoi, P.H., Galhardo, R.S., Luche, D.D., Van Sluys, M.A., Menck, C.F., Oliva, G. J. Biol. Chem. (2006) [Pubmed]
  10. Lantibiotics and microcins: polypeptides with unusual chemical diversity. Jack, R.W., Jung, G. Current opinion in chemical biology. (2000) [Pubmed]
  11. In vivo processing and antibiotic activity of microcin B17 analogs with varying ring content and altered bisheterocyclic sites. Sinha Roy, R., Kelleher, N.L., Milne, J.C., Walsh, C.T. Chem. Biol. (1999) [Pubmed]
  12. A thiazole compound with potential antithrombotic activity. Nishizawa, E.E., Mendoza, A.R., Honohan, T., Annis, K.A. Thromb. Haemost. (1982) [Pubmed]
  13. Study of ruthenium(II) complexes with anticancer drugs as ligands. Design of metal-based phototherapeutic agents. Cini, R., Tamasi, G., Defazio, S., Corsini, M., Zanello, P., Messori, L., Marcon, G., Piccioli, F., Orioli, P. Inorganic chemistry. (2003) [Pubmed]
  14. The origin of the carbon chain in the thiazole moiety of thiamine in Escherichia coli: incorporation of deuterated 1-deoxy-D-threo-2-pentulose. Thérisod, M., Fischer, J.C., Estramareix, B. Biochem. Biophys. Res. Commun. (1981) [Pubmed]
  15. Combinatorial modification of natural products: synthesis and in vitro analysis of derivatives of thiazole peptide antibiotic GE2270 A: A-ring modifications. Clough, J., Chen, S., Gordon, E.M., Hackbarth, C., Lam, S., Trias, J., White, R.J., Candiani, G., Donadio, S., Romanò, G., Ciabatti, R., Jacobs, J.W. Bioorg. Med. Chem. Lett. (2003) [Pubmed]
  16. Stable fluorescent dye-DNA complexes in high sensitivity detection of protein-DNA interactions. Application to heat shock transcription factor. Rye, H.S., Drees, B.L., Nelson, H.C., Glazer, A.N. J. Biol. Chem. (1993) [Pubmed]
  17. Asymmetric hydrogenation of trisubstituted olefins with iridium-phosphine thiazole complexes: a further investigation of the ligand structure. Hedberg, C., Källström, K., Brandt, P., Hansen, L.K., Andersson, P.G. J. Am. Chem. Soc. (2006) [Pubmed]
  18. Expressed protein ligation to probe regiospecificity of heterocyclization in the peptide antibiotic microcin B17. Roy, R.S., Allen, O., Walsh, C.T. Chem. Biol. (1999) [Pubmed]
  19. Novel thiazole derivatives as inhibitors of superoxide production by human neutrophils: synthesis and structure-activity relationships. Chihiro, M., Nagamoto, H., Takemura, I., Kitano, K., Komatsu, H., Sekiguchi, K., Tabusa, F., Mori, T., Tominaga, M., Yabuuchi, Y. J. Med. Chem. (1995) [Pubmed]
  20. Structural basis for contrasting activities of ribosome binding thiazole antibiotics. Lentzen, G., Klinck, R., Matassova, N., Aboul-ela, F., Murchie, A.I. Chem. Biol. (2003) [Pubmed]
  21. Induction of rat liver microsomal epoxide hydrolase by thiazole and pyrazine: hydrolysis of 2-cyanoethylene oxide. Kim, S.G., Kedderis, G.L., Batra, R., Novak, R.F. Carcinogenesis (1993) [Pubmed]
  22. Medial smooth muscle cell proliferation in the balloon injured rabbit aorta: effect of a thiazole compound with platelet inhibitory activity. Schaub, R.G., Simmons, C.A. Thromb. Haemost. (1984) [Pubmed]
  23. Conformational analysis of 5-lipoxygenase inhibitors: role of the substituents in chiral recognition and on the active conformations of the (methoxyalkyl)thiazole and methoxytetrahydropyran series. Lambert-van der Brempt, C., Bruneau, P., Lamorlette, M.A., Foster, S.J. J. Med. Chem. (1994) [Pubmed]
  24. HIV-1 neutralization and tumor cell proliferation inhibition in vitro by simplified analogues of pyrido[4,3,2-mn]thiazolo[5,4-b]acridine marine alkaloids. Taraporewala, I.B., Cessac, J.W., Chanh, T.C., Delgado, A.V., Schinazi, R.F. J. Med. Chem. (1992) [Pubmed]
  25. Thiamin biosynthesis in eukaryotes: characterization of the enzyme-bound product of thiazole synthase from Saccharomyces cerevisiae and its implications in thiazole biosynthesis. Chatterjee, A., Jurgenson, C.T., Schroeder, F.C., Ealick, S.E., Begley, T.P. J. Am. Chem. Soc. (2006) [Pubmed]
  26. Recent advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Kulkarni, M.V., Kulkarni, G.M., Lin, C.H., Sun, C.M. Current medicinal chemistry. (2006) [Pubmed]
  27. Tracing the origins of COX-2 inhibitors' structures. Lednicer, D. Current medicinal chemistry. (2002) [Pubmed]
  28. Thromboxane A2 synthetase inhibitors. 2. Syntheses and activities of tetrahydronaphthalene and indan derivatives. Kanao, M., Watanabe, Y., Kimura, Y., Saegusa, J., Yamamoto, K., Kanno, H., Kanaya, N., Kubo, H., Ashida, S., Ishikawa, F. J. Med. Chem. (1989) [Pubmed]
  29. Histamine H1 receptor activation blocks two classes of potassium current, IK(rest) and IAHP, to excite ferret vagal afferents. Jafri, M.S., Moore, K.A., Taylor, G.E., Weinreich, D. J. Physiol. (Lond.) (1997) [Pubmed]
  30. Neurospora crassa CyPBP37: a cytosolic stress protein that is able to replace yeast Thi4p function in the synthesis of vitamin B1. Faou, P., Tropschug, M. J. Mol. Biol. (2004) [Pubmed]
  31. Identification of agthi1, whose product is involved in biosynthesis of the thiamine precursor thiazole, in actinorhizal nodules of Alnus glutinosa. Ribeiro, A., Praekelt, U., Akkermans, A.D., Meacock, P.A., van Kammen, A., Bisseling, T., Pawlowski, K. Plant J. (1996) [Pubmed]
  32. Distamycin analogues with enhanced lipophilicity: synthesis and antimicrobial activity. Khalaf, A.I., Waigh, R.D., Drummond, A.J., Pringle, B., McGroarty, I., Skellern, G.G., Suckling, C.J. J. Med. Chem. (2004) [Pubmed]
  33. Novel thiazole based heterocycles as inhibitors of LFA-1/ICAM-1 mediated cell adhesion. Sanfilippo, P.J., Jetter, M.C., Cordova, R., Noe, R.A., Chourmouzis, E., Lau, C.Y., Wang, E. J. Med. Chem. (1995) [Pubmed]
  34. Cytokine suppressive anti-inflammatory compounds inhibit bone resorption in vitro. Votta, B.J., Bertolini, D.R. Bone (1994) [Pubmed]
  35. Synthesis and structural properties of patellamide A derivatives and their copper(II) compounds. Bernhardt, P.V., Comba, P., Fairlie, D.P., Gahan, L.R., Hanson, G.R., Lötzbeyer, L. Chemistry (Weinheim an der Bergstrasse, Germany) (2002) [Pubmed]
  36. Identification and localization of the gene cluster encoding biosynthesis of the antitumor macrolactam leinamycin in Streptomyces atroolivaceus S-140. Cheng, Y.Q., Tang, G.L., Shen, B. J. Bacteriol. (2002) [Pubmed]
  37. New resolution of 2-formyl-1,4-dhp derivatives using CIDR methodology. Facile access to new chiral tricyclic thiolactam. Marchalín, S., Cvopová, K., Kriz, M., Baran, P., Oulyadi, H., Daïch, A. J. Org. Chem. (2004) [Pubmed]
  38. Detection of bromodeoxyuridine incorporation by alteration of the fluorescence emission from nucleic acid binding dyes using only an argon ion laser. Frey, T. Cytometry. (1994) [Pubmed]
WikiGenes - Universities