The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Plasmodium falciparum activates endogenous Cl(-) channels of human erythrocytes by membrane oxidation.

Intraerythrocytic survival of the malaria parasite Plasmodium falciparum requires that host cells supply nutrients and dispose of waste products. This solute transport is accomplished by infection-induced new permeability pathways (NPP) in the erythrocyte membrane. Here, whole-cell patch-clamp and hemolysis experiments were performed to define properties of the NPP. Parasitized but not control erythrocytes constitutively expressed two types of anion conductances, differing in voltage dependence and sensitivity to inhibitors. In addition, infected but not control cells hemolyzed in isosmotic sorbitol solution. Both conductances and hemolysis of infected cells were inhibited by reducing agents. Conversely, oxidation induced identical conductances and hemolysis in non-infected erythrocytes. In conclusion, P.falciparum activates endogenous erythrocyte channels by applying oxidative stress to the host cell membrane.[1]

References

  1. Plasmodium falciparum activates endogenous Cl(-) channels of human erythrocytes by membrane oxidation. Huber, S.M., Uhlemann, A.C., Gamper, N.L., Duranton, C., Kremsner, P.G., Lang, F. EMBO J. (2002) [Pubmed]
 
WikiGenes - Universities