The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion.

The preparation and characterization of an amperometric 2,4,6-trinitrotoluene (TNT) biosensor based on the surface immobilization of a maltose binding protein (MBP) nitroreductase (NR) fusion (MBP-NR) onto an electrode modified with an electropolymerized film of N-(3-pyrrol-1-ylpropyl)-4,4'-bipyridine ( PPB) are described. The MBP domain of MBP-NR exhibits a high and specific affinity toward electropolymerized films of PPB with the immobilized enzyme retaining virtually all of its enzymatic activity. Under similar conditions, the wild-type NR enzyme (i.e., without the MBP domain) loses most of its enzymatic activity. The kinetics of the catalytic reaction between the biosensor and TNT and 2,4-dinitrotoluene (DNT) were characterized using rotated disk electrode and cyclic voltammetry techniques, and values of 1.4 x 10(4) and 7.1 x 10(4) M(-1) s(-1) were obtained for TNT and DNT, respectively. The apparent Michaelis-Menten constants (KM) for MBP-NR in solution and on the surface, using TNT as substrate, were determined to be 27 and 95 microM, respectively. The corresponding value for "wild-type" NR in solution containing TNT was 78 microM, which is very close to the value obtained for MBP-NR on the surface. The limits of detection for both TNT and DNT were estimated to be 2 microM, and the sensitivities were determined to be 205 and 222 nA/microM, respectively.[1]


  1. Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion. Naal, Z., Park, J.H., Bernhard, S., Shapleigh, J.P., Batt, C.A., Abruña, H.D. Anal. Chem. (2002) [Pubmed]
WikiGenes - Universities