The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Dinitrotoluol     1-methyl-2,4-dinitro-benzene

Synonyms: DINITROTOLUENE, CCRIS 268, CHEBI:920, SGCUT00009, CHEMBL259865, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of DINITROTOLUENE

  • Dinitrotoluene: acute toxicity, oncogenicity, genotoxicity, and metabolism [1].
  • Technical grade dinitrotoluene (TDNT), composed principally of 2,4-DNT (76%) and 2,6-DNT (20%), is a potent hepatocarcinogen when fed to male F-344 rats for 1 year (100% incidence of hepatocellular carcinoma) while 2,4-DNT is only weakly hepatocarcinogenic [2].
  • The genes encoding the degradative pathway were identified within a 27-kb region of DNA cloned from Burkholderia cepacia R34, a strain that grows using 2,4-DNT as a sole carbon, energy, and nitrogen source [3].
  • Cloning and characterization of Pseudomonas sp. strain DNT genes for 2,4-dinitrotoluene degradation [4].
  • The frequency of chromosomal aberrations (gaps included) was increased (P < 0.05) in the exposed workers in comparison with a group of factory controls and correlated with the level of 24DNT Hb-adducts in young subjects (<31 years) [5].
 

High impact information on DINITROTOLUENE

 

Chemical compound and disease context of DINITROTOLUENE

 

Biological context of DINITROTOLUENE

 

Anatomical context of DINITROTOLUENE

 

Associations of DINITROTOLUENE with other chemical compounds

  • Following 5 day p.o. treatment of male F-344 rats with aflatoxin B1 (AFB), 2-acetylaminofluorene (AAF), technical grade dinitrotoluene (DNT), or 2,4-diaminotoluene, microsomal cytochrome P450 dependent enzyme activities were depressed while epoxide hydrolase activity was markedly elevated (3-8 times control) [22].
  • The inhibition of metabolic cooperation by DMSO, the requirement for only short-lived reductions in metabolic cooperation for maximal TGR cell recovery, and the lack of inhibition by DNT suggests that caution should be exercised when interpreting the results of this bioassay [23].
  • The order of potency for increasing epoxide hydrolase was AFB greater than AAF greater than 2,6-dinitrotoluene greater than 3'-methyl-N,N-dimethyl-4-aminoazobenzene greater than DNT greater than 2, 4-dinitrotoluene [22].
  • Microcosm studies using a DNT-degrading culture from column effluent suggest that, after the onset of 2,4-DNT degradation, nitrite evolution will eventually control the extent of degradation achieved by two mechanisms [24].
  • In column studies conducted at field capacity, high levels of 2,4-DNT biodegradation were rapidly stimulated by the addition of a complete mineral medium but not by bicarbonate-buffered distilled deionized water or by phosphate-amended tap water [24].
 

Gene context of DINITROTOLUENE

  • 4-Methyl-5-nitrocatechol (MNC) is an intermediate in the degradation of 2,4-dinitrotoluene by Burkholderia sp. strain DNT [25].
  • MacA was found to be most closely related to TftE, the maleylacetate reductase from Burkholderia cepacia AC1100 (62 % identical positions) and to a presumed maleylacetate reductase from a dinitrotoluene catabolic gene cluster from B. cepacia R34 (61 % identical positions) [26].
  • DDO DntAc variant I204L also transformed both 2,6-DNT and 2,4-DNT 2-fold faster than wild-type DDO (0.8 +/- 0.6 nmol/min/mg protein and 4.7 +/- 0.5 nmol/min/mg protein, respectively) [27].
  • The most potent inducers of DT-diaphorase activity were 3-methylcholanthrene, polychlorinated biphenyls and dinitrotoluene [28].
  • The field samples are analyzed for the presence of explosives, of which DNT and RDX are indeed detected [29].
 

Analytical, diagnostic and therapeutic context of DINITROTOLUENE

  • Technical grade dinitrotoluene (TDNT) was shown to be a potent hepatocarcinogen in rats; however, ambiguous results were obtained from bioassays which evaluated 2,4-DNT, the principal isomer in the technical mixture [30].
  • The transport of DNBalcG into the bile of male, but not female, livers appeared to be saturated after perfusion with 20 micro M 2,4-DNT [16].
  • We previously reported on the mineralization of 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) in an aerobic fluidized-bed bioreactor (FBBR) (Lendenmann et al. 1998 Environ Sci Technol 32:82-87) [31].
  • We present possible modes of action of 2,4-DNT toxicity and suggest that fathead minnow cDNA microarrays can be useful to identify mechanisms of toxicity in fish and as a predictive tool for toxicity in mammals [32].
  • After 2,4-DNT and 2,6-DNT applications (acetone and soils), HPLC analysis of radiolabel in receptor fluid during the period of maximum flux revealed no significant metabolites [33].

References

  1. Dinitrotoluene: acute toxicity, oncogenicity, genotoxicity, and metabolism. Rickert, D.E., Butterworth, B.E., Popp, J.A. Crit. Rev. Toxicol. (1984) [Pubmed]
  2. Dinitrotoluene structure-dependent initiation of hepatocytes in vivo. Leonard, T.B., Lyght, O., Popp, J.A. Carcinogenesis (1983) [Pubmed]
  3. Origins of the 2,4-dinitrotoluene pathway. Johnson, G.R., Jain, R.K., Spain, J.C. J. Bacteriol. (2002) [Pubmed]
  4. Cloning and characterization of Pseudomonas sp. strain DNT genes for 2,4-dinitrotoluene degradation. Suen, W.C., Spain, J.C. J. Bacteriol. (1993) [Pubmed]
  5. Biomarkers of exposure, effect, and susceptibility in workers exposed to nitrotoluenes. Sabbioni, G., Jones, C.R., Sepai, O., Hirvonen, A., Norppa, H., Järventaus, H., Glatt, H., Pomplun, D., Yan, H., Brooks, L.R., Warren, S.H., Demarini, D.M., Liu, Y.Y. Cancer Epidemiol. Biomarkers Prev. (2006) [Pubmed]
  6. Dinitrotoluene isomer-specific hepatocarcinogenesis in F344 rats. Leonard, T.B., Graichen, M.E., Popp, J.A. J. Natl. Cancer Inst. (1987) [Pubmed]
  7. Biodegradation of nitroaromatic compounds. Spain, J.C. Annu. Rev. Microbiol. (1995) [Pubmed]
  8. Hemoglobin adducts in workers exposed to nitrotoluenes. Jones, C.R., Liu, Y.Y., Sepai, O., Yan, H., Sabbioni, G. Carcinogenesis (2005) [Pubmed]
  9. Determination of nitroaromatic compounds in air samples at femtogram level using C18 membrane sampling and on-line extraction with LC-MS. Sánchez, C., Carlsson, H., Colmsjö, A., Crescenzi, C., Batlle, R. Anal. Chem. (2003) [Pubmed]
  10. Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion. Naal, Z., Park, J.H., Bernhard, S., Shapleigh, J.P., Batt, C.A., Abruña, H.D. Anal. Chem. (2002) [Pubmed]
  11. Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. strain DNT. Haigler, B.E., Nishino, S.F., Spain, J.C. J. Bacteriol. (1994) [Pubmed]
  12. Saturation mutagenesis of Burkholderia cepacia R34 2,4-dinitrotoluene dioxygenase at DntAc valine 350 for synthesizing nitrohydroquinone, methylhydroquinone, and methoxyhydroquinone. Keenan, B.G., Leungsakul, T., Smets, B.F., Wood, T.K. Appl. Environ. Microbiol. (2004) [Pubmed]
  13. Protein engineering of the 4-methyl-5-nitrocatechol monooxygenase from Burkholderia sp. strain DNT for enhanced degradation of nitroaromatics. Leungsakul, T., Johnson, G.R., Wood, T.K. Appl. Environ. Microbiol. (2006) [Pubmed]
  14. Metabolism of 2,4-dinitrotoluene by Salmonella typhimurium strains TA98, TA98NR and TA98/1,8-DNP6, and mutagenicity of the metabolites of 2,4-dinitrotoluene and related compounds to strains TA98 and TA100. Sayama, M., Mori, M., Nakada, Y., Kagamimori, S., Kozuka, H. Mutat. Res. (1991) [Pubmed]
  15. Identification of biotransformation products from 2,4-dinitrotoluene. McCormick, N.G., Cornell, J.H., Kaplan, A.M. Appl. Environ. Microbiol. (1978) [Pubmed]
  16. Sex-dependent metabolism and biliary excretion of [2,4-14C] dinitrotoluene in isolated perfused rat livers. Bond, J.A., Medinsky, M.A., Dent, J.G., Rickert, D.E. J. Pharmacol. Exp. Ther. (1981) [Pubmed]
  17. Engineering Pseudomonas fluorescens for biodegradation of 2,4-dinitrotoluene. Monti, M.R., Smania, A.M., Fabro, G., Alvarez, M.E., Argaraña, C.E. Appl. Environ. Microbiol. (2005) [Pubmed]
  18. Structure-activity relationship for the intrinsic hepatotoxicity of dinitrotoluenes. Spanggord, R.J., Myers, C.J., LeValley, S.E., Green, C.E., Tyson, C.A. Chem. Res. Toxicol. (1990) [Pubmed]
  19. In vivo and in vitro metabolism of 2,4-dinitrotoluene in strain A mice. Schut, H.A., Dixit, R., Loeb, T.R., Stoner, G.D. Biochem. Pharmacol. (1985) [Pubmed]
  20. Reduction of 2,4-dinitrotoluene by Wistar rat liver microsomal and cytosol fractions. Mori, M., Matsuhashi, T., Miyahara, T., Shibata, S., Izima, C., Kozuka, H. Toxicol. Appl. Pharmacol. (1984) [Pubmed]
  21. Reproductive toxicity of 2,4-dinitrotoluene in the rat. Bloch, E., Gondos, B., Gatz, M., Varma, S.K., Thysen, B. Toxicol. Appl. Pharmacol. (1988) [Pubmed]
  22. Effect of hepatocarcinogens on epoxide hydrolase and other xenobiotic metabolizing enzymes. Dent, J.G., Graichen, M.E. Carcinogenesis (1982) [Pubmed]
  23. Limiting factors of the V79 cell metabolic cooperation assay for tumor promoters. Dorman, B.H., Boreiko, C.J. Carcinogenesis (1983) [Pubmed]
  24. Soil column evaluation of factors controlling biodegradation of DNT in the vadose zone. Fortner, J.D., Zhang, C., Spain, J.C., Hughes, J.B. Environ. Sci. Technol. (2003) [Pubmed]
  25. Purification and sequence analysis of 4-methyl-5-nitrocatechol oxygenase from Burkholderia sp. strain DNT. Haigler, B.E., Suen, W.C., Spain, J.C. J. Bacteriol. (1996) [Pubmed]
  26. Characterization of a gene cluster encoding the maleylacetate reductase from Ralstonia eutropha 335T, an enzyme recruited for growth with 4-fluorobenzoate. Seibert, V., Thiel, M., Hinner, I.S., Schlömann, M. Microbiology (Reading, Engl.) (2004) [Pubmed]
  27. Saturation mutagenesis of 2,4-DNT dioxygenase of Burkholderia sp. strain DNT for enhanced dinitrotoluene degradation. Leungsakul, T., Keenan, B.G., Yin, H., Smets, B.F., Wood, T.K. Biotechnol. Bioeng. (2005) [Pubmed]
  28. Hepatic levels of cytosolic, microsomal and 'mitochondrial' epoxide hydrolases and other drug-metabolizing enzymes after treatment of mice with various xenobiotics and endogenous compounds. Meijer, J., DePierre, J.W. Chem. Biol. Interact. (1987) [Pubmed]
  29. Trace analysis of explosives in soil: pressurized fluid extraction and gas and liquid chromatography-mass spectrometry. Campbell, S., Ogoshi, R., Uehara, G., Li, Q.X. Journal of chromatographic science. (2003) [Pubmed]
  30. Dinitrotoluene isomer-specific enhancement of the expression of diethylnitrosamine-initiated hepatocyte foci. Leonard, T.B., Adams, T., Popp, J.A. Carcinogenesis (1986) [Pubmed]
  31. Kinetic analysis of simultaneous 2,4-dinitrotoluene (DNT) and 2, 6-DNT biodegradation in an aerobic fluidized-bed biofilm reactor. Smets, B.F., Riefler, R.G., Lendenmann, U., Spain, J.C. Biotechnol. Bioeng. (1999) [Pubmed]
  32. Gene Expression Profiles in Fathead Minnow Exposed to 2,4-DNT: Correlation with Toxicity in Mammals. Wintz, H., Yoo, L.J., Loguinov, A., Wu, Y.Y., Steevens, J.A., Holland, R.D., Beger, R.D., Perkins, E.J., Hughes, O., Vulpe, C.D. Toxicol. Sci. (2006) [Pubmed]
  33. Percutaneous absorption of explosives and related compounds: an empirical model of bioavailability of organic nitro compounds from soil. Reifenrath, W.G., Kammen, H.O., Palmer, W.G., Major, M.M., Leach, G.J. Toxicol. Appl. Pharmacol. (2002) [Pubmed]
 
WikiGenes - Universities