The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

TNT     2-methyl-1,3,5-trinitro- benzene

Synonyms: Gradetol, Tritolol, Trilite, Tritolo, Tritone, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Trinitrotoluene

 

Psychiatry related information on Trinitrotoluene

  • The immunosensor developed could detect TNT as low as 0.09 ng/ml, within a response time of approximately 22 min [5].
 

High impact information on Trinitrotoluene

  • These engineered receptors can function as biosensors for their new ligands; we also incorporated them into synthetic bacterial signal transduction pathways, regulating gene expression in response to extracellular trinitrotoluene or l-lactate [6].
  • It was recently reported that in this strain TNT can serve as a final electron acceptor in respiratory chains and that the reduction of TNT is coupled to ATP synthesis [1].
  • These approaches are highly efficient in removing TNT, and increasing amounts of research into the potential usefulness of phytoremediation, rhizophytoremediation, and transgenic plants with bacterial genes for TNT removal are being done [1].
  • Seeds from transgenic plants were able to germinate and grow in the presence of 1 mM glycerol trinitrate (GTN) or 0.05 mM trinitrotoluene, at concentrations that inhibited germination and growth of wild-type seeds [7].
  • This review focuses on recent findings that may be relevant for bioremediation or complete degradation of TNT or picric acid [8].
 

Chemical compound and disease context of Trinitrotoluene

 

Biological context of Trinitrotoluene

 

Anatomical context of Trinitrotoluene

 

Associations of Trinitrotoluene with other chemical compounds

 

Gene context of Trinitrotoluene

  • Although TNT concentrations decreased in both P1 and P2 eluates relative to untreated baseline soil (BL) eluates, a recovery in lymphocyte growth/viability and IL-2 secretion was seen with P2 but not P1 eluates relative to BL eluates [26].
  • With a crude enzyme preparation, we found that TNT inhibited the enzyme activity of eNOS in a concentration-dependent manner (IC50 value = 49.4 microM) [27].
  • The P. fluorescens gene, xenB, encodes a 37,441-Da monomeric, NAD(P)H-dependent flavoprotein that exhibits fivefold regioselectivity for removal of the central nitro group from NG and that transforms TNT but did not readily react with 2-cyclohexen-1-one [28].
  • The P. putida gene, xenA, encodes a 39,702-Da monomeric, NAD(P)H-dependent flavoprotein that removes either the terminal or central nitro groups from NG and that reduces 2-cyclohexen-1-one but did not readily reduce 2,4,6-trinitrotoluene (TNT) [28].
  • Under the conditions, however, experiments with the inducible NOS inhibitor aminoguanidine revealed that an adaptive response against hypertension caused by TNT occurs [27].
 

Analytical, diagnostic and therapeutic context of Trinitrotoluene

References

  1. Biological degradation of 2,4,6-trinitrotoluene. Esteve-Núñez, A., Caballero, A., Ramos, J.L. Microbiol. Mol. Biol. Rev. (2001) [Pubmed]
  2. Hemoglobin adducts, urinary metabolites and health effects in 2,4,6-trinitrotoluene exposed workers. Sabbioni, G., Liu, Y.Y., Yan, H., Sepai, O. Carcinogenesis (2005) [Pubmed]
  3. Aerobic Growth of Escherichia coli with 2,4,6-Trinitrotoluene (TNT) as the Sole Nitrogen Source and Evidence of TNT Denitration by Whole Cells and Cell-Free Extracts. Stenuit, B., Eyers, L., Rozenberg, R., Habib-Jiwan, J.L., Agathos, S.N. Appl. Environ. Microbiol. (2006) [Pubmed]
  4. Zeta-crystallin catalyzes the reductive activation of 2,4,6-trinitrotoluene to generate reactive oxygen species: a proposed mechanism for the induction of cataracts. Kumagai, Y., Wakayama, T., Lib, S., Shinohara, A., Iwamatsu, A., Sun, G., Shimojo, N. FEBS Lett. (2000) [Pubmed]
  5. Surface plasmon resonance immunosensor for highly sensitive detection of 2,4,6-trinitrotoluene. Shankaran, D.R., Gobi, K.V., Sakai, T., Matsumoto, K., Toko, K., Miura, N. Biosensors & bioelectronics. (2005) [Pubmed]
  6. Computational design of receptor and sensor proteins with novel functions. Looger, L.L., Dwyer, M.A., Smith, J.J., Hellinga, H.W. Nature (2003) [Pubmed]
  7. Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. French, C.E., Rosser, S.J., Davies, G.J., Nicklin, S., Bruce, N.C. Nat. Biotechnol. (1999) [Pubmed]
  8. Bioelimination of trinitroaromatic compounds: immobilization versus mineralization. Heiss, G., Knackmuss, H.J. Curr. Opin. Microbiol. (2002) [Pubmed]
  9. Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Van Aken, B., Yoon, J.M., Schnoor, J.L. Appl. Environ. Microbiol. (2004) [Pubmed]
  10. Toxicity and mutagenicity of 2,4,-6-trinitrotoluene and its microbial metabolites. Won, W.D., DiSalvo, L.H., Ng, J. Appl. Environ. Microbiol. (1976) [Pubmed]
  11. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. French, C.E., Nicklin, S., Bruce, N.C. Appl. Environ. Microbiol. (1998) [Pubmed]
  12. Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Pak, J.W., Knoke, K.L., Noguera, D.R., Fox, B.G., Chambliss, G.H. Appl. Environ. Microbiol. (2000) [Pubmed]
  13. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. Goldman, E.R., Medintz, I.L., Whitley, J.L., Hayhurst, A., Clapp, A.R., Uyeda, H.T., Deschamps, J.R., Lassman, M.E., Mattoussi, H. J. Am. Chem. Soc. (2005) [Pubmed]
  14. SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Ekman, D.R., Lorenz, W.W., Przybyla, A.E., Wolfe, N.L., Dean, J.F. Plant Physiol. (2003) [Pubmed]
  15. Neuronal nitric oxide synthase (NNOS) catalyzes one-electron reduction of 2,4,6-trinitrotoluene, resulting in decreased nitric oxide production and increased nNOS gene expression: implication for oxidative stress. Kumagai, Y., Kikushima, M., Nakai, Y., Shimojo, N., Kunimoto, M. Free Radic. Biol. Med. (2004) [Pubmed]
  16. A membrane-based displacement flow immunoassay. Rabbany, S.Y., Marganski, W.A., Kusterbeck, A.W., Ligler, F.S. Biosensors & bioelectronics. (1998) [Pubmed]
  17. Transformation of 2,4,6-trinitrotoluene (TNT) by immobilized Phanerochaete chrysosporium under fed-batch and continuous TNT feeding conditions. Rho, D., Hodgson, J., Thiboutot, S., Ampleman, G., Hawari, J. Biotechnol. Bioeng. (2001) [Pubmed]
  18. Plasma membrane dependent reduction of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium. Stahl, J.D., Aust, S.D. Biochem. Biophys. Res. Commun. (1993) [Pubmed]
  19. 2,4,6-trinitrotoluene-induced reproductive toxicity via oxidative DNA damage by its metabolite. Homma-Takeda, S., Hiraku, Y., Ohkuma, Y., Oikawa, S., Murata, M., Ogawa, K., Iwamuro, T., Li, S., Sun, G.F., Kumagai, Y., Shimojo, N., Kawanishi, S. Free Radic. Res. (2002) [Pubmed]
  20. Serine 1179 phosphorylation of endothelial nitric oxide synthase caused by 2,4,6-trinitrotoluene through PI3K/Akt signaling in endothelial cells. Sun, Y., Sumi, D., Kumagai, Y. Toxicol. Appl. Pharmacol. (2006) [Pubmed]
  21. Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Mezzari, M.P., Walters, K., Jelínkova, M., Shih, M.C., Just, C.L., Schnoor, J.L. Plant Physiol. (2005) [Pubmed]
  22. Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Zhang, H.X., Cao, A.M., Hu, J.S., Wan, L.J., Lee, S.T. Anal. Chem. (2006) [Pubmed]
  23. Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion. Naal, Z., Park, J.H., Bernhard, S., Shapleigh, J.P., Batt, C.A., Abruña, H.D. Anal. Chem. (2002) [Pubmed]
  24. Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization. Cotte-Rodríguez, I., Takáts, Z., Talaty, N., Chen, H., Cooks, R.G. Anal. Chem. (2005) [Pubmed]
  25. Initial-phase optimization for bioremediation of munition compound-contaminated soils. Funk, S.B., Roberts, D.J., Crawford, D.L., Crawford, R.L. Appl. Environ. Microbiol. (1993) [Pubmed]
  26. Immunotoxicity of explosives-contaminated soil before and after bioremediation. Beltz, L.A., Neira, D.R., Axtell, C.A., Iverson, S., Deaton, W., Waldschmidt, T.J., Bumpus, J.A., Johnston, C.G. Arch. Environ. Contam. Toxicol. (2001) [Pubmed]
  27. 2,4,6-Trinitrotoluene inhibits endothelial nitric oxide synthase activity and elevates blood pressure in rats. Sun, Y., Iemitsu, M., Shimojo, N., Miyauchi, T., Amamiya, M., Sumi, D., Hayashi, T., Sun, G., Shimojo, N., Kumagai, Y. Arch. Toxicol. (2005) [Pubmed]
  28. Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases. Blehert, D.S., Fox, B.G., Chambliss, G.H. J. Bacteriol. (1999) [Pubmed]
  29. Multichannel homogeneous immunoassay for detection of 2,4,6-trinitrotoluene (TNT) using a microfabricated capillary array electrophoresis chip. Bromberg, A., Mathies, R.A. Electrophoresis (2004) [Pubmed]
  30. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Goldman, E.R., Anderson, G.P., Tran, P.T., Mattoussi, H., Charles, P.T., Mauro, J.M. Anal. Chem. (2002) [Pubmed]
  31. Electrochemiluminescence enzyme immunoassays for TNT and pentaerythritol tetranitrate. Wilson, R., Clavering, C., Hutchinson, A. Anal. Chem. (2003) [Pubmed]
 
WikiGenes - Universities