The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Protein kinase C as a molecular target for cancer prevention by selenocompounds.

Selenium is a very effective cancer-preventive agent, suppressing tumor promotion and early stages of tumor progression. However, the mechanisms by which selenium exerts these cancer-preventive actions are not known. Protein kinase C (PKC) is a receptor for certain tumor promoters and also plays a crucial role in events related to tumor progression. Therefore, it is not only a potential target for the cancer-preventive activity of selenium, but also it has the structural basis for interaction with selenium. Redox-active selenocompounds can inactivate PKC, particularly the Ca(2+)-dependent isozymes, by reacting with the critical cysteine-rich regions present within the catalytic domain while, in some cases, also reacting with the cysteine residues present within the zinc-fingers of the regulatory domain. The selenoprotein thioredoxin reductase ( TR), acting through thioredoxin, reverses the inactivation of PKC induced by selenometabolites. Furthermore, TR, through a direct interaction involving its selenosulfur center with the zinc-thiolates of PKC, can reverse the redox modification of this kinase induced by selenometabolites. Thus the selenometabolite-induced toxicity is reversed by a selenoprotein, and therefore an interrelationship exists between these two mechanisms of selenium actions. Moreover, this also explains how a resistance to selenium develops in advanced tumor cells probably due to an overexpression of functional TR. Selenium-induced inactivation of PKC may, at least in part, be responsible for the selenium-induced inhibition of tumor promotion, cell growth, invasion, and metastasis, as well as for the induction of apoptosis.[1]

References

  1. Protein kinase C as a molecular target for cancer prevention by selenocompounds. Gopalakrishna, R., Gundimeda, U. Nutrition and cancer. (2001) [Pubmed]
 
WikiGenes - Universities