The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Redox control of EBV infection: prevention by thiol-dependent modulation of functional CD21/EBV receptor expression.

CD21 serves as a receptor for the Epstein-Barr virus (EBV). In this report, surface expression of CD21 on B and T cells was shown to be suppressed by a thiol-antioxidant, N-acetylcysteine (NAC), in a dose- and time-dependent manner. In contrast, expression of other surface markers, CD25 and CD4 for T cells and CD19 and surface IgM for B cells, was not affected by NAC. When an EBV-negative B-cell line B104 was treated with NAC, the cells were not susceptible to infection with B95-8-derived EBV. The effect of NAC was shown to be irrelevant to the transcriptional levels of CD21 mRNA and the intracellular glutathione levels. Immunoprecipitation study revealed that NAC causes a loss of anti-CD21 monoclonal antibody ( HB5) binding to both membrane and soluble CD21, suggesting that NAC modulates the structure of CD21. Other thiol-antioxidants, such as 2-mercaptoethanol, pyrrolidine dithiocarbamate, and glutathione, showed similar effect to NAC on CD21 expression. These results suggest the possible modulation of EBV infection via thiol-dependent redox control of CD21, and thiol-antioxidants may be good candidates for controlling EBV infection.[1]

References

  1. Redox control of EBV infection: prevention by thiol-dependent modulation of functional CD21/EBV receptor expression. Nishinaka, Y., Nakamura, H., Okada, N., Okada, H., Yodoi, J. Antioxid. Redox Signal. (2001) [Pubmed]
 
WikiGenes - Universities