The cutaneous reverse Arthus reaction requires intercellular adhesion molecule 1 and L-selectin expression.
The deposition of immune complexes (IC) induces an acute inflammatory response with tissue injury. IC-induced inflammation is mediated by inflammatory cell infiltration, a process highly regulated by expression of multiple adhesion molecules. To assess the role of L-selectin and ICAM-1 in this pathogenetic process, the cutaneous reverse passive Arthus reaction was examined in mice lacking L-selectin (L-selectin(-/-)), ICAM-1 ( ICAM-1(-/-)), or both (L-selectin/ ICAM-1(-/-)). Edema and hemorrhage, which peaked 4 and 8 h after IC challenge, respectively, were significantly reduced in L-selectin(-/-), ICAM-1(-/-), and L-selectin/ ICAM-1(-/-) mice compared with wild-type littermates. In general, edema and hemorrhage were more significantly inhibited in ICAM-1(-/-) mice than in L-selectin(-/-) mice, but were most significantly reduced in L-selectin/ ICAM-1(-/-) mice compared with ICAM-1(-/-) or L-selectin(-/-) mice. Decreased edema and hemorrhage correlated with reduced neutrophil and mast cell infiltration in all adhesion molecule-deficient mice, but leukocyte infiltration was most affected in L-selectin/ ICAM-1(-/-) mice. Reduced neutrophil and mast cell infiltration was also observed for all mutant mice in the peritoneal Arthus reaction. Furthermore, cutaneous TNF-alpha production was inhibited in each deficient mouse, which paralleled the reductions in cutaneous inflammation. These results indicate that ICAM-1 and L-selectin cooperatively contribute to the cutaneous Arthus reaction by regulating neutrophil and mast cell recruitment and suggest that ICAM-1 and L-selectin are therapeutic targets for human IC-mediated disease.[1]References
- The cutaneous reverse Arthus reaction requires intercellular adhesion molecule 1 and L-selectin expression. Kaburagi, Y., Hasegawa, M., Nagaoka, T., Shimada, Y., Hamaguchi, Y., Komura, K., Saito, E., Yanaba, K., Takehara, K., Kadono, T., Steeber, D.A., Tedder, T.F., Sato, S. J. Immunol. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg