The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages.

Toll-like receptor 2 (TLR2) agonists induce a subset of TLR4-inducible proinflammatory genes, which suggests the use of differential signaling pathways. Murine macrophages stimulated with the TLR4 agonist Escherichia coli lipopolysaccharide (LPS), but not with TLR2 agonists, induced phosphorylation of signal transducer and activator of transcription 1alpha (STAT1alpha) and STAT1beta, which was blocked by antibodies to interferon beta (IFN-beta) but not IFN-alpha. All TLR2 agonists poorly induced IFN-beta, which is encoded by an immediate early LPS-inducible gene. Thus, the failure of TLR2 agonists to induce STAT1-dependent genes resulted, in part, from their inability to express IFN-beta. TLR4-induced IFN-beta mRNA was MyD88- and PKR (double-stranded RNA-dependent protein kinase)-independent, but TIRAP (Toll-interleukin 1 receptor domain-containing adapter protein)-dependent. Together, these findings provide the first mechanistic basis for differential patterns of gene expression activated by TLR4 and TLR2 agonists.[1]


  1. TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Toshchakov, V., Jones, B.W., Perera, P.Y., Thomas, K., Cody, M.J., Zhang, S., Williams, B.R., Major, J., Hamilton, T.A., Fenton, M.J., Vogel, S.N. Nat. Immunol. (2002) [Pubmed]
WikiGenes - Universities