AMPA receptor-mediated modulation of inward rectifier K+ channels in astrocytes of mouse hippocampus.
Astrocytes and neurons are tightly associated and recent data suggest a direct signaling between neuronal and glial cells in vivo. To further analyze these interactions, the patch-clamp technique was combined with single-cell RT-PCR in acute hippocampal brain slices. Subsequent to functional analysis, the cytoplasm of the same cell was harvested to perform transcript analysis and identify subunits that underlie inwardly rectifying K+ currents (I(Kir)) in astrocytes of the CA1 stratum radiatum. Transcripts encoding Kir2.1, Kir2.2, or Kir2.3, were encountered in a majority of cells, while Kir4.1 was less frequent. Further investigation revealed that glial Kir channels are rapidly inhibited upon activation of AMPA-type glutamate receptors, most probably due a receptor-mediated influx of Na+, which plugs the channels from the intracellular side. A transient inhibition of I(Kir) in astrocytes in response to neuronal glutamate release and glial AMPA receptor activation represents a further, so far undetected mechanism to balance neuronal excitability.[1]References
- AMPA receptor-mediated modulation of inward rectifier K+ channels in astrocytes of mouse hippocampus. Schröder, W., Seifert, G., Hüttmann, K., Hinterkeuser, S., Steinhäuser, C. Mol. Cell. Neurosci. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg